Dalgaardherskind3983
In order to reveal the correlation effect on the electronic properties in particular 5f electron occupation numbers of Pu/U ions in a (Pu,U) mixed oxide-PuUO4, a first principles calculation is performed by using density functional theory (DFT) plus a dynamical mean field theory (DMFT) scheme with the spin-orbit coupling (SOC) and on-site Coulomb repulsion for correlation effect due to localized Pu/U 5f orbitals. Results demonstrate that Pu/U 5f electron occupation numbers in the ground state of PuUO4 are mainly composed of 5f4/5f5 and 5f2/5f3 configurations, and exhibiting the intermediate occupation (IO) numbers with average 5f occupation numbers of about nf = 4.879 and 2.423 for Pu and U ions, respectively, irrespective of different Pu and U lattice sites in PuUO4. Pu 5f j = 5/2 and j = 7/2 components are in moderately and weakly correlated states, respectively, while U 5f j = 5/2 and j = 7/2 manifolds are both in weakly correlated states. jj and LS coupling schemes are feasible for Pu and U 5f electrons, respectively. In order to directly compare with the experimental angle-resolved photoemission spectrum (ARPES), we also estimate the momentum-resolved electronic spectrum function for this system.Hypoxia in the solid tumor microenvironment (TME) can easily induce tumor recurrence, metastasis, and drug resistance. The use of man-made nanozymes is considered to be an effective strategy for regulating hypoxia in the TME. Herein, Ru@MnO2 nanozymes were constructed via an in situ reduction method, and they showed excellent photothermal conversion efficiency and catalytic activity. The anti-tumor drug DOX with fluorescence was loaded on the Ru@MnO2 nanozymes, and an erythrocyte membrane was further coated on the surface of the Ru@MnO2 nanozymes to construct nanozymes with on-demand release abilities. The erythrocyte membrane (RBCm) enhances the biocompatibility of the Ru@MnO2 nanozymes and prolongs their circulation time in the blood. Ru@MnO2 nanozymes can catalyze endogenous H2O2 to produce O2 to relieve hypoxia in the TME to enhance the efficacy of the photothermal therapy/chemotherapy of cancer. In vitro studies confirmed that the Ru@MnO2 nanozymes showed good tumor penetration abilities and a synergistic anti-tumor effect. Importantly, both in vivo and in vitro studies have confirmed that the oxygen supply in situ enhanced the efficacy of the PTT/chemotherapy of cancer. Accordingly, this study demonstrated that Ru@MnO2 nanozymes can be used as an effective integrated system allowing catalysis, photothermal therapy, and chemotherapy for cancer management.Scarless skin regeneration remains a challenge due to the complicated microenvironment involved in wound healing. Here, the hydrophobic drug, asiaticoside (AC), was loaded inside silk nanofiber hydrogels to achieve bioactive and injectable matrices for skin regeneration. AC was dispersed in aqueous silk nanofiber hydrogels with retention of biological functions that regulated inflammatory reactions and vascularization in vitro. After implantation in full-thickness wound defects, these AC-laden hydrogel matrices achieved scarless wound repair. Inflammatory reactions and angiogenesis were regulated during inflammation and remodeling, which was responsible for wound regeneration similar to normal skin. Both in vitro and in vivo studies demonstrated promising applications of these AC-laden silk hydrogels towards scarless tissue regeneration.Polyethyleneimine aids the gas diffusion precipitation of nano-structured basic cobalt carbonate sheets at the air/solution interface. Upon drying, these mineral films undergo self-rolling into 3D coiled structures. Exploring this principle for the design of self-supported functional materials, porous Co3O4 spirals composed of interconnected nanoparticles are obtained by thermal conversion.Biological thiols (Cys, Hcy and GSH) are crucial biomolecules in living cells and play indispensable roles in maintaining the redox homeostasis of organisms. But due to their similar molecular structure, the development of effective tools for distinguishing two or three of them remains a great difficulty. Herein, we constructed a sensitive sensor (CB) by connecting the bifunctional fluorescent reagent with coumarin derivatives for simultaneous recognition of these three thiols through different pathways. Free CB had no fluorescence; however, with gradual addition of thiols, the chlorine unit was replaced by sulfhydryl. Furthermore, the intramolecular rearrangement occurred between the amino and sulfhydryl groups of Cys/Hcy and yellow fluorescence was observed at 570 nm. https://www.selleckchem.com/products/brivudine.html However, GSH with a large structure could not undergo intramolecular rearrangement, and green fluorescence was excited at 505 nm. In this way, Cys/Hcy and GSH can be detected distinctively. Under dual excitation wavelengths, CB exhibited high selectivity and fast response to the three thiols. Furthermore, CB was successfully applied to imaging endogenous and exogenous thiols in living cells and zebrafish, providing us with a reliable tool for thiols recognition.The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.