Daletoft8458
To analyze the genetic origin, relationships, structure, and admixture in Mayan Native American groups from Guatemala and Mexico based on 15 autosomal short tandem repeats (STRs) loci commonly used in human identification (HID).
We genotyped 513 unrelated Mayan samples from Guatemala based on 15 STR loci (AmpFlSTR® Identifiler kit). Moreover, we included 4408 genotypes previously reported, as following Mayas from Guatemala and Mexico (n = 1666) and from Latin American, European, and African (n = 2742) populations. Forensic parameters, genetic distances, admixture, and population structure were assessed.
Forensic parameters of the 15 STRs in different Mayan groups from Guatemala were reported. Low (Fst = 0.78%; p = 0.000) and non-significant differentiation (Fst = 1.8%; p = 0.108) were observed in Mayas from Guatemala and Mexico, respectively. The relative homogeneity observed among Mayan groups supported theories of extensive pre-Columbian gene flow and trade throughout the Mayan Empire. The distribution of the three Native American ancestries among these Mayan groups did not support the presumable Guatemalan origin of Tojolabal and Lacandon people (South, Mexico). The nonsignificant differentiation between Ladinos and Mayas suggests a relative panmixia in Guatemala. Mestizos from southeastern Mexico and Guatemala constitute a core of Native American ancestry in Latin America related to the Mayan Empire in Central America.
The higher European admixture and homogeneity in Mexican Mayas of the Yucatan Peninsula suggest more intensive post-Columbian gene flow in this region than in Guatemalan Mayas.
The higher European admixture and homogeneity in Mexican Mayas of the Yucatan Peninsula suggest more intensive post-Columbian gene flow in this region than in Guatemalan Mayas.Global warming poses major challenges for plant survival and agricultural productivity. Thus, efforts to enhance stress resilience in plants are key strategies for protecting food security. Gene regulatory networks (GRNs) are a critical mechanism conferring stress resilience. Until recently, predicting GRNs of the individual cells that make up plants and other multicellular organisms was impeded by aggregate population scale measurements of transcriptome and other genome-scale features. With the advancement of high-throughput single cell RNA-seq and other single cell assays, learning GRNs for individual cells is now possible, in principle. In this article, we report on recent advances in experimental and analytical methodologies for single cell sequencing assays especially as they have been applied to the study of plants. We highlight recent advances and ongoing challenges for scGRN prediction, and finally, we highlight the opportunity to use scGRN discovery for studying and ultimately enhancing abiotic stress resilience in plants.Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. compound library inhibitor The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.A built environment is a human-made environment providing surroundings for human occupancy, activities, and settlement. It is supposed to safeguard humans from all undesirable and harmful pollutants; however, indoor concentrations of some pollutants are much greater than that of the outdoors. Bioaerosols infiltrate from the outdoors in addition to many indoor sources of bioaerosols including the use of various chemicals as well as activities like cooking, smoking, cleaning, or even normal movement. They are also associated with a number of serious health concerns. Various ecological factors associated with the generation, the persistence as well as the dispersal of these microbial components of indoor bioaerosols, are discussed in this review, that have not been considered all together till now. The factors like microbial taxa, environmental factors, and anthropogenic activities (human occupancy, activities, and impact of urbanization) are addressed in the review. Effects of both indoor environmental factors like architectural design, lighting, ventilation, temperature, humidity, indoor/outdoor ratio, particulate matter, indoor chemistry as well as outdoor environmental factors like geography, seasons, and meteorology on the microbial concentrations have been discussed. Efforts are underway to design selective pressures for microbes to create a healthy symbiotic built microbiome as the "right" indoor microbiome is a "healthy" indoor microbiome.
Portal hypertension commonly accompanies advanced liver disease and often gives rise to life-threatening complications, including bleeding (haemorrhage) from oesophageal and gastrointestinal varices. Variceal bleeding commonly occurs in children and adolescents with chronic liver disease or portal vein thrombosis. Prevention is, therefore, important. Randomised clinical trials have shown that non-selective beta-blockers and endoscopic variceal band ligation decrease the incidence of variceal bleeding in adults. In children and adolescents, band ligation, beta-blockers, and sclerotherapy have been proposed as primary prophylaxis alternatives for oesophageal variceal bleeding. However, it is unknown whether these interventions are of benefit or harm when used for primary prophylaxis in children and adolescents.
To assess the benefits and harms of band ligation compared with sham or no intervention for primary prophylaxis of oesophageal variceal bleeding in children and adolescents with chronic liver disease or portal vein thrombosis.