Daleharboe9784
Neutrophil accumulation was significantly decreased in CARD9 KO mice, but not in dectin-2 KO mice. Tumor necrosis factor alpha (TNF-α), keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-2 (MIP-2) production in BALFs were also attenuated in CARD9 KO mice, but not in dectin-2 KO mice. Production of TNF-α and KC by alveolar macrophages stimulated with pneumococcal culture supernatants was significantly attenuated in CARD9 KO mice, but not in dectin-2 KO mice, compared to that in each group's respective control mice. In addition, pneumococcus-infected CARD9 KO mice showed larger bacterial burdens in the lungs than did WT mice. These data indicate that CARD9 is required for neutrophil migration after pneumococcal infection, as well as inflammatory cytokine and chemokine production by alveolar macrophages, and suggest that a CLR distinct from dectin-2 may be involved in this response.Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. click here Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.Stimulator of interferon genes (STING) acts as a cytoplasmic signaling hub of innate immunity that is activated by host-derived or bacterially derived cyclic dinucleotides. Listeria monocytogenes is a foodborne, facultative intracellular pathogen that secretes c-di-AMP and activates STING, yet the in vivo role of the STING pathway during bacterial pathogenesis remains unclear. In this study, we found that STING-deficient mice had increased weight loss and roughly 10-fold-increased systemic bacterial burden during L. monocytogenes-induced enterocolitis. Infection with a L. monocytogenes mutant impaired in c-di-AMP secretion failed to elicit a protective response, whereas a mutant with increased c-di-AMP secretion triggered enhanced protection. Type I interferon (IFN) is a major output of STING signaling; however, disrupting IFN signaling during L. monocytogenes-induced enterocolitis did not recapitulate STING deficiency. In the absence of STING, the intestinal immune response was associated with a reduced influx of inflammatory monocytes. These studies suggest that in barrier sites such as the intestinal tract, where pathogen-associated molecular patterns are abundant, cytosolic surveillance systems such as STING are well positioned to detect pathogenic bacteria.Lung-resident macrophages are crucial to the maintenance of health and in the defence against lower respiratory tract infections. Macrophages adapt to local environmental cues that drive their appropriate function; however, this is often dysregulated in many inflammatory lung pathologies. In mucosal tissues, neuro-immune interactions enable quick and efficient inflammatory responses to pathogenic threats. Although a number of factors that influence the antimicrobial response of lung macrophages are known, the role of neuronal factors is less well understood. Here, we show an intricate circuit involving the neurotrophic factor, neurturin (NRTN) on human lung macrophages that dampens pro-inflammatory cytokine release and modulates the type of matrix metalloproteinases produced in response to viral stimuli. This circuit involves type 1 interferon-induced up-regulation of RET that when combined with the glial cell line-derived neurotrophic factor (GDNF) receptor α2 (GFRα2) allows binding to epithelial-derived NRTN. Our research highlights a non-neuronal immunomodulatory role for NRTN and a novel process leading to a specific antimicrobial immune response by human lung-resident macrophages.
The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes.
We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human.
We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic.
Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.
Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.