Dalbywilcox0396
To identify etiology, clinical findings, diagnostic results, treatment, and short- and long-term survival and to report factors associated with nonsurvival and survival in horses with peritonitis.
Retrospective study.
Horses (n = 72).
Medical records at William R. Pritchard Veterinary Medical Teaching Hospital from 2007-2017 were reviewed for horses diagnosed with peritonitis. The essential inclusion criterion was a peritoneal nucleated cell count of ≥25 000 cells/μL. Gastrointestinal rupture and cases in which peritonitis occurred after abdominal surgery or castration were excluded. Information retrieved from medical records included signalment, history, clinicopathological and peritoneal fluid variables, diagnostic imaging findings, inciting cause, treatment, and short- and long-term survival. Data were analyzed by using Fisher's exact test, Wilcoxon rank sum test, and χ
test (P < .05).
Colic was the most common presenting complaint (34/72 [48%]). A definitive diagnosis could be made in 44 (4nd successful treatment.Sequence-defined oligomeric molecules with discrete folding propensities, termed foldamers, are a versatile source of agents with tailored structure and function. An inspiration for the development of the foldamer paradigm are natural biomacromolecules, the sequence-encoded folding of which is the basis of life. Metal ions and clusters are common features in proteins, where the role of metal varies from supporting structure to enabling function. The ubiquity of metals in natural systems suggests promise for metals in the context of folded artificial backbones. In this Minireview, we highlight efforts to realize this potential through a survey of published work on the design, synthesis, and characterization of metal-binding foldamers.Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites.For polycyclic aromatics with heterole-fused structures, the orientation of fused heterole rings as well as the geometry of their fused structures has a large impact on the physicochemical properties. In this study, a series of isomers of thiophene-fused naphthodiphospholes was designed and synthesized. Systematic investigation unveiled the explicit impact of heterole-fused structures on their structural and electronic properties. The isomers with 1,2/5,6-fused structure display phosphorescence due to enhanced spin-orbit coupling, whereas the isomers with 2,3/6,7-fused structure exhibit intense fluorescence. The trans isomers exhibited 1D slip π-stacked arrangement. In contrast, the cis isomers displayed 2D herringbone structure or columnar structure with a cavity. Therefore, the precisely controlled fusion of heterole rings is a universal approach to uncover their intrinsic properties for versatile applications as organic functional materials.
Spirodiclofen is a spirocyclic tetronic acid-type acaricidal agent. Nowadays, serious pests resistance to spirodiclofen and cross-resistance to other acaricides has appeared. To overcome pests resistance and discover new potential agrochemicals, a series of ether derivatives were prepared based on spirodiclofen as a lead compound. Their pesticidal activities were investigated against three typically agricultural pests, Mythimna separata Walker, Aphis citricola Van der Goot and Tetranychus cinnabarinus Boisduval.
Four steric structures of compounds 5e, 5f, 5i and 5j were determined by single-crystal X-ray diffraction. Against T. cinnabarinus, compounds 5b, 5f and 5l exhibited potent acaricidal activity, and their good control effects in the glasshouse were observed when compared with spirodiclofen, especially the control efficiency of compound 5b was comparable to that of spirodiclofen; against M. separata, compound 5j showed > 1.8-fold potent insecticidal activity of spirodiclofen; against A. citricola, compounds 5d and 5j displayed > 2.0-fold potent aphicidal activity of spirodiclofen. The relationships between their structures and agricultural activities were also discussed.
Compounds 5b and 5d could be further studied as acaricidal and aphicidal agents, respectively; compound 5j can be considered as a lead compound for the insecticidal and aphicidal activities. This will pave the way for future application of these derivatives as pesticide substitutes for spirodiclofen. © 2021 Society of Chemical Industry.
Compounds 5b and 5d could be further studied as acaricidal and aphicidal agents, respectively; compound 5j can be considered as a lead compound for the insecticidal and aphicidal activities. This will pave the way for future application of these derivatives as pesticide substitutes for spirodiclofen. © 2021 Society of Chemical Industry.
Helicoverpa zea is managed with foliar applications of chlorantraniliprole in cotton varieties that do not express the Vip3Aa19 toxin in the US Cotton Belt. Foliar insecticides and Bt could interact to influence larval susceptibility. Therefore, it has been suggested that chlorantraniliprole can be used as a tool for Bt resistance management. click here We designed field and laboratory studies to test the hypothesis that the interaction of Bt toxin and chlorantraniliprole application would result in lower H. zea larval survival when compared to the individual effect of Bt or chlorantraniliprole alone. We also tested for these interactions over time, since chlorantraniliprole residual has not been studied in cotton.
Results from two field experiments and two laboratory experiments were similar. We found no interactions with Bt and chlorantraniliprole using data not corrected for natural mortality in untreated plots, indicating that these factors did not interact to influence survival. Moreover, we found that Bt and chlorantraniliprole did not interact to influence larval weight and instar.