Cummingshyllested2715

Z Iurium Wiki

5-24 and BiVO4-7-24 photocatalyst provide insights into the photocatalytic mechanism of the m-BiVO4/t-BiVO4 heterostructure.Traditional enzyme-linked immunosorbent assay (ELISA) suffers from the limitations of relatively low sensitivity and stability, and enzyme-labelled antibodies are hard to be prepared and purified. Based on a nanozyme, an aptamer and Fe3O4 magnetic nanoparticles (MNP), a nanozyme and aptamer-based immunosorbent assay (NAISA) was developed for aflatoxin B1 (AFB1) detection with simpler operation and separation. In this work, mesoporous SiO2/Au-Pt (m-SAP) were prepared to act as signal labels, which showed high catalase-like activity and was denoted as nanozyme. Aptamer was adopted to specifically recognize with AFB1, and MNP facilitated to realize magnetic separation. To verify the performance of NAISA, traditional ELISA (t-ELISA) and enhanced ELISA (e-ELISA) using MNP and m-SAP nanozyme were applied in AFB1 detection. Grazoprevir The NAISA method showed the lowest limit of detection (LOD) with 5 pg mL-1 (n = 3, ±4.2 %), 600 and 12-fold lower than that of t-ELISA (3 ng mL-1) and e-ELISA (0.06 ng mL-1), respectively. In the interference tests, AFB1 can be identified among six different interfering substances. The NAISA method, thus, can be of great importance as it allows selective and sensitive AFB1 detection, while providing the simplicity of use and need for screening hazardous materials.The acoustic parameters and operating conditions that determine efficiency of oil recovery from oily sludge are studied. Based on this, the mechanism of ultrasonic disintegration of oily sludge is analyzed. The results show that lower frequency ultrasound results in larger and more energetic cavitation bubbles that are more effective in the desorption of oil from solid particles. Moreover, acoustic intensity and treatment time that correspond to maximal oil recovery are found. Increasing the ratio of water to sludge and pH can reduce the slurry viscosity and facilitate the formation of HSiO3-, respectively, which improves the oil recovery efficiency. Moreover, Triton X-100 has better oil solubilizing effects than SDBS. After ultrasonic treatment, small amounts of asphaltenes are more stable on solid particles than other components. The heteroatoms such as S, N, and O in asphaltenes form hydrogen bonds with hydroxyl groups on the surface of the particles, impeding the desorption of oil. Mechanical effects such as shock waves and micro jets due to acoustic cavitation can break the hydrogen bonds between asphaltenes and solid particles, thereby facilitating oil recovery from oily sludge.Organo-bentonite (OrB) was prepared by modifying bentonite with chitosan, and natural surfactant extracted from Sapindus rarak fruit. The physical alteration post-modification, performance of phosphates (Pi) adsorption, and possibility as a Pi-supplementation for plants of OrB were assessed and compared to acid-activated bentonite (AAB). The physical alteration due to modification of bentonite was characterized. SEM images were not indicating significant morphology differences between OrB and AAB. Existence of chitosan layers in OrB causes a decrease in basal spacing as characterized using XRD. The BET surface area of OrB was decreased compared to AAB due to pore coverage by chitosan. Adsorption studies reveal that OrB has a higher adsorption capacity towards Pi than AAB, which is 97.608 and 131.685 mg/g at 323 K for AAB and OrB, respectively. The H-shape isotherm curve indicates that chemisorption is dominantly controlling the adsorption. The isotherm and kinetics adsorption were well fitted to Langmuir and Pseudo-second order models, respectively. Performance of AAB and OrB as Pi-supplementation was assessed based on growth phenotypes of Arabidopsis thaliana; seedlings show that supplementation of Pi@AAB and Pi@OrB (at half doses) can promote primary root extension. These results also demonstrate the safety of direct disposal of the materials into the soil.In this work, the biodurability of three silica particle types (synthetic amourphous silica, MCM-41 microparticles, MCM-41 nanoparticles) functionalised with three different essential oil components (carvacrol, eugenol, vanillin) was studied under conditions that represented the human gastrointestinal tract and lysosomal fluid. The effect of particle type, surface immobilised component and mass quantity on the physico-chemical properties of particles and silicon dissolution was determined. Exposure to biological fluids did not bring about changes in the zeta potential values or particle size distribution of the bare or functionalised materials, but the in vitro digestion process partially degraded the structure of the MCM-41 nanoparticles. Functionalisation preserved the structure of the MCM-41 nanoparticles after simulating an in vitro digestion process, and significantly decreased the amount of silicon dissolved after exposing different particles to both physiological conditions, independently of the essential oil component anchored to their surface. The MCM-41 microparticles showed the highest solubility, while synthetic amorphous silica presented the lowest levels of dissolved silicon. The study of these modified silica particles under physiological conditions could help to predict the toxicological behaviour of these new materials.Recently, simultaneous sulfide removal and bioenergy production by microalgal treatment have attracted growing attention. However, the response of nitrogen metabolism to the sulfide-removal process has yet to be explored. Here, variable levels of sulfide could be completely removed by Chlamydomonas sp. Tai-03 under both high and low nitrate conditions in synthetic wastewaters. The highest sulfide removal rate of 5.56 mg-S L-1 h-1 was achieved with the addition of 100 mg L-1 sulfide in the presence of high nitrate. Meanwhile, sulfide was chemically oxidized to sulfate and then ingested by microalgae. Interestingly, sulfide-removal efficiency critically depended on nitrate concentration. Sulfide can also enhance the ability of microalgae to assimilate nitrogen. Based on the analysis of sulfur- and nitrogen-related metabolic profiling, serine as a precursor decreased by 94 % under low levels of nitrate, which induced the significant inhibition of cysteine and methionine biosynthesis. The results indicated that nitrogen source played a critical role in the sulfur cycle because of the positive relationship between the aforementioned metabolic processes and nitrate concentration.

Autoři článku: Cummingshyllested2715 (Timm Rush)