Cruzsilva3247

Z Iurium Wiki

Herein, we report fabrication of MoSe2 functionalized with bimetal Co/Ni particles, which shows promising electrochemical performance in oxygen and hydrogen evolution reactions (OER and HER) due to its physicochemical properties such as electronic configuration and great electrochemical stability. We propose functionalization with two transition metals, cobalt and nickel, expecting a synergic effect in electrocatalytic activity in a water splitting reaction. These electrocatalytic reactions are essential for efficient electrochemical energy storage. The thin flakes were obtained by exfoliation of bulk molybdenum diselenide. Next, after deposition of metals, precursors were carbonized. Electrochemical data reveal that the presence of Ni and Co particles boosts electrocatalyst performance, providing a great number of active sites due to their conductivity. Interestingly, the material exhibited great evolution potential and good stability in long-term tests.Conjugation with cationic lysine residues improves the biophysical and biological properties of peptide nucleic acids (PNAs). A single lysine is routinely used to improve the solubility and prevent aggregation of the neutral and hydrophobic amide backbone of PNA. Literature precedents include the attachment of lysine at either the N- or the C-terminus. Liraglutide ic50 Moreover, conjugation with short lysine peptides (four to eight residues) improves the cellular uptake of PNA akin to more complex cell-penetrating peptides. Herein, we report a systematic study of the effect of lysine location (N- vs C-terminus) and chirality (d- vs l-) on triple-helical binding of PNA to double-stranded RNA and DNA (dsRNA and dsDNA). The results confirmed our earlier findings that conjugation with lysine significantly increased the stability of PNA-dsRNA and PNA-dsDNA triplexes and that PNA affinity for dsRNA was about an order of magnitude higher than for the same sequence of dsDNA. In contrast, conjugation of PNA with noncharged amino acids decreased the affinity of PNA. Surprisingly, neither the location nor the chirality of lysine had significant impact on PNA affinity for either dsRNA or dsDNA. The results are consistent with the lack of chiral preorganization of single-stranded PNAs, even after conjugation with four d- or l-amino acids. Instead, the positive charge of lysine appears to be the main driving force behind the increased affinity.A modern method for the preparation of some new N-arylthiophene-2-carboxamidines via amidinyl radicals generated using UV-vis-light promoting the reduction of N-arylthiophene-2-carboxamidoximes without any catalyst in a short amount of time, highly straight forward, and in an efficient manner is described. This method defeats the flaws of the conventional methods for the reduction of amidoxime derivatives to amidine derivatives, which require harsh conditions such as using a strong acid, high temperature, and expensive catalysts. Benzo[d]imidazoles, benzo[d]oxazoles, and amides can also be synthesized by applying this method. The photoproducts were analyzed by various spectroscopic and analytical techniques, including thin-layer chromatography, column chromatography, high-performance liquid chromatography, gas chromatography/mass spectrometry, IR, 1H NMR, 13C NMR, and MS. Notably, the chromatographic analyses proved that the best time for the production of N-arylthiophene-2-carboxamidines is 20 min. The reaction mechanism comprising pathways and intermediates was also suggested via the homolysis of N-O and C-N bonds.Biochar has become an attractive adsorbent for heavy metal removal, but its application potential is very limited because of the relatively low adsorption capacity and poor selectivity. In the present study, we decorated the biochar (BC) by impregnating hydrous ferric oxide (HFO) within the pore of biochar and consequently obtained a new hybrid adsorbent denoted as HFO-BC. The results show HFO-BC exhibited excellent performance to two representative heavy metals, i.e., Cd(II) and Cu(II), with maximal experimental sorption capacities of 29.9 mg/g for Cd(II) and 34.1 mg/g for Cu(II). HFO-BC showed satisfactory anti-interference ability for Cd(II) and Cu(II) removal in the presence of high levels of Ca(II) and Mg(II) owing to the specific inner-sphere complexation between the immobilized HFO and Cd(II) and Cu(II), which was probed by XPS analysis. Cd(II) and Cu(II) removal onto HFO-BC experienced two distinct stages prior to be adsorbed, i.e., migration from solution to the outside surface of adsorbent and pore diffusion and approached equilibrium within 100 min. In the laboratory-scale small column adsorption experiment, HFO-BC can generate ∼129 and 300 BV effluents for Cd(II) and Cu(II), equivalent to 774- and 1854-fold of its own weight, to meet their treatment standards. Moreover, the exhausted HFO-BC can be effectively regenerated using HCl-CaCl2 binary solution with a desorption rate more than 95%. All results validate that impregnating HFO inside the pores of BC is a promising approach to promote the practical applicability of BC for removing heavy metals from the polluted water.The control of pyrite (FeS2) oxidation from a source is a problem of great concern on treatment of acid mine drainage (AMD). Compared with air and water, the effect of light on pyrite oxidation has not attracted enough attention. However, we found that pyrite photocorrosion in the light promoted the oxidation of pyrite. Herein, we introduce a method of coating pyrite with graphene oxide (GO), which can inhibit the oxidation and photocorrosion of pyrite while it can also degrade organic pollutants. The characterization results show that a covalent bond forms between the GO and pyrite. The stable and uniform GO coating prevents the permeation of O2 and H2O and promotes the transfer of photogenerated electrons. Moreover, it changes the conduction band (CB) and valence band (VB) levels of GO-pyrite. All of these are vital for preventing the corrosion of pyrite and promoting its photocatalytic ability. More importantly, the effect of CB and VB levels on the oxidized species was discussed. The inhibition of photocorrosion is achieved by the reaction of GO with the photoinduced h+, •OH, and •O2-.

Autoři článku: Cruzsilva3247 (Sellers William)