Crowelllin0479

Z Iurium Wiki

Atherosclerosis is a chronic cardiovascular disease which increases risk of major cardiovascular events including myocardial infarction and stroke. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) have long been recognised as a hallmark of cardiovascular disease and are associated with cardiovascular risk factors including hypertension, obesity and hypertriglyceridemia. In this review, we discuss the clinical literature that link ADMA concentrations to increased risk of the development of atherosclerosis. The formation of atherosclerotic lesions relies on the interplay between vascular dysfunction, leading to endothelial activation and the accumulation of inflammatory cells, particularly macrophages, within the vessel wall. Here, we review the mechanisms through which elevated ADMA contributes to endothelial dysfunction, activation and reactive oxygen species (ROS) production; how ADMA may affect vascular smooth muscle phenotype; and finally whether ADMA plays a regulatory role in the inflammatory processes occurring within the vessel wall.The cocrystallization of high-energy explosives has attracted great interests since it can alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for researchers worldwide. However, the disadvantage of CL-20 has increased sensitivity to mechanical stimuli and cocrystallization of CL-20 with other compounds may provide a way to decrease its sensitivity. The intermolecular interaction of five types of CL-20-based cocrystal (CL-20/TNT, CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular dynamic simulation was reviewed. The preparation methods and thermal decomposition properties of CL-20-based cocrystal are emphatically analyzed. Special emphasis is focused on the improved mechanical performances of CL-20-based cocrystal, which are compared with those of CL-20. The existing problems and challenges for the future work on CL-20-based cocrystal are discussed.Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees.The endocannabinoid system plays an important role in the intake of palatable food. For example, endocannabinoid signaling in the upper small-intestinal epithelium is increased (i) in rats after tasting dietary fats, which promotes intake of fats, and (ii) in a mouse model of diet-induced obesity, which promotes overeating via impaired nutrient-induced gut-brain satiation signaling. We now utilized a combination of genetic, pharmacological, and behavioral approaches to identify roles for cannabinoid CB1Rs in upper small-intestinal epithelium in preferences for a western-style diet (WD, high-fat/sucrose) versus a standard rodent diet (SD, low-fat/no sucrose). Mice were maintained on SD in automated feeding chambers. click here During testing, mice were given simultaneous access to SD and WD, and intakes were recorded. Mice displayed large preferences for the WD, which were inhibited by systemic pretreatment with the cannabinoid CB1R antagonist/inverse agonist, AM251, for up to 3 h. We next used our novel intestinal epithelium-specific conditional cannabinoid CB1R-deficient mice (IntCB1-/-) to investigate if intestinal CB1Rs are necessary for WD preferences. Similar to AM251 treatment, preferences for WD were largely absent in IntCB1-/- mice when compared to control mice for up to 6 h. Together, these data suggest that CB1Rs in the murine intestinal epithelium are required for acute WD preferences.

Most drug-resistant

isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant

and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown.

Rectal swabs were used for

isolation from 299 non-infectious dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of

for major STs were performed.

There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing

in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (

< 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22.

Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant

isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.

Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.

Autoři článku: Crowelllin0479 (Ulriksen Albrechtsen)