Cravensolomon0475

Z Iurium Wiki

Digital food ordering platforms are used by millions across the world and provide easy access to takeaway fast-food that is broadly, though not exclusively, characterised as energy dense and nutrient poor. Outlets are routinely rated for hygiene, but not for their healthiness. Nutritional information is mandatory in pre-packaged foods, with many companies voluntarily using traffic light labels to support making healthier choices. We wanted to identify a feasible universal method to objectively score takeaway fast-food outlets listed on Just Eat that could provide users with an accessible rating that can infer an outlet's 'healthiness'. Using a sample of takeaway outlets listed on Just Eat, we obtained four complete assessments by nutrition researchers of each outlet's healthiness to create a cumulative score that ranged from 4 to 12. We then identified and manually extracted nutritional attributes from each outlet's digital menu, e.g., number of vegetables that have the potential to be numerated. Using generalized linear modelling we identified which attributes were linear predictors of an outlet's healthiness assessment from nutritional researchers. AM 095 clinical trial The availability of water, salad, and the diversity of vegetables were positively associated with academic researchers' assessment of an outlet's healthiness, whereas the availability of chips, desserts, and multiple meal sizes were negatively associated. This study shows promise for the feasibility of an objective measure of healthiness that could be applied to all outlet listings on Just Eat and other digital food outlet aggregation platforms. However, further research is required to assess the metric's validity, its desirability and value to users, and ultimately its potential influence on food choice behaviour.Computational ghost imaging (CGI), with the advantages of wide spectrum, low cost, and robustness to light scattering, has been widely used in many applications. The key issue is long time correlations for acceptable imaging quality. To overcome the issue, we propose parallel retina-like computational ghost imaging (PRGI) method to improve the performance of CGI. In the PRGI scheme, sampling and reconstruction are carried out by using the patterns which are divided into blocks from designed retina-like patterns. Then, the reconstructed image of each block is stitched into the entire image corresponding to the object. The simulations demonstrate that the proposed PRGI method can obtain a sharper image while greatly reducing the time cost than CGI based on compressive sensing (CSGI), parallel architecture (PGI), and retina-like structure (RGI), thereby improving the performance of CGI. The proposed method with reasonable structure design and variable selection may lead to improve performance for similar imaging methods and provide a novel technique for real-time imaging applications.Thyroid hormones have a catabolic effect on bone homeostasis. Hence, this study aimed to evaluate serum vitamin D, calcium, and phosphate and bone marker levels and bone mineral density (BMD) among patients with different thyroid diseases. This cross-sectional study included patients with underlying thyroid diseases (n = 64, hyperthyroid; n = 53 euthyroid; n = 18, hypothyroid) and healthy controls (n = 64). BMD was assessed using z-score and left hip and lumbar bone density (g/cm2). The results showed that the mean serum vitamin D Levels of all groups was low ( less then 50 nmol/L). Thyroid patients had higher serum vitamin D levels than healthy controls. All groups had normal serum calcium and phosphate levels. The carboxy terminal collagen crosslink and procollagen type I N-terminal propeptide levels were high in hyperthyroid patients and low in hypothyroid patients. The z-score for hip and spine did not significantly differ between thyroid patients and control groups. The hip bone density was remarkably low in the hyperthyroid group. In conclusion, this study showed no correlation between serum 25(OH)D levels and thyroid diseases. The bone markers showed a difference between thyroid groups with no significant difference in BMD.Laser-induced graphene (LIG) is an emerging technique for producing few-layer graphene or graphene-like material that has recently received increasing attention, due to its unique advantages. Subsequently, a variety of lasers and materials have been used to fabricate LIG using this technique. However, there is a lack of understanding of how different lasers (wavelengths) perform differently in the LIG conversion process. In this study, the produced LIG on polyimide (PI) under a locally water-cooled condition using a 10.6 μm CO2 infrared laser and a 355 nm ultraviolet (UV) laser are compared. The experimental investigations reveal that under the same UV and CO2 laser fluence, the ablation of PI show different results. Surface morphologies with micron-sized and nanometer pores were formed by the UV laser under different laser fluences, whereas micron-sized pores and sheet structure with fewer pores were produced by the CO2 laser. Energy dispersive spectrometry and three-dimensional topography characterization indicate that the photochemical effects were also involved in the LIG conversion with UV laser irradiation. It is also observed through experiments that the photothermal effect contributed to the formation of LIG under both lasers, and the LIG formed on PI substrates by the CO2 laser showed better quality and fewer layers.Vitamin D plays a crucial and very well-known role in regulation of calcium homeostasis and bone metabolism and mineralization. However, a huge and more recent body of evidence supports the positive influence of vitamin D on the regulation of immune response, ranging from protection against respiratory tract infections to prevention and management of asthma. Nevertheless, vitamin D deficiency is a very common condition and there is an increasing need for suitable products for proper supplementation, allowing good compliance also in specific populations. Orally disintegrating tablets (ODT) were first developed to overcome the difficulty experienced by pediatric and geriatric patients of swallowing traditional oral dosage forms and, recently, orodispersible films (ODF) are gaining popularity as novel dosage form for assuming active pharmaceutical ingredients, vitamins, and ingredients for food supplements. This study describes a 2000 IU Vitamin D3 ODF for daily intake, consisting of hydrophilic polymers and suitable excipients, manufactured by film-casting process. Elongation-at-break (E%), Young's modulus (Y), and tensile strength (TS) were investigated using a dynamometer. Chemical stability was evaluated assaying the vitamin D3 in the films stored at different environmental conditions. In addition, in vitro disintegration and dissolution studies were performed. Correlation existed between the mechanical properties of the film and the residual water, acting as plasticizer. The stability study showed that vitamin D3 assay was ≥90% also after 3 months at 40 °C. The film disintegrated in less than 1 min and the vitamin D3 released was ≥75% after 15 min. An ODF with suitable properties can be manufactured and used as innovative dosage form for vitamin D3 food supplements.Colloidal quantum dots (QDs) are a promising luminescent material for the development of next generation hybrid light-emitting diodes (QDLEDs). In particular, QDs are of great interest in terms of the development of solid-state light sources with an emission spectrum that mimics daylight. In this study, we used CdSe(core)/ZnS/CdS/ZnS(shell) QDs with organic ligands mimicking polyfluorene and its modified derivatives to obtain QD-polymer composites emitting white light. We found that the emission of the composites obtained by spin-coating, being strongly dependent on the chemical structure of the polymer matrix and the QD-to-polymer mass ratio, can be accurately controlled and adjusted to bring its emission spectrum close to the spectrum of daylight (CIE coordinates 1931 0.307; 0.376). Moreover, the light emission of these composites has been found to be temporally stable, which is due to the minimal structural instability and volume-uniform charge and energy transfer properties. Thus, the use of the synthesized polyfluorene-based organic ligands with controllable chemical structures adaptable to the structure of the polymer matrix can significantly increase the stability of white light emission from QD composites, which can be considered promising electroluminescent materials for fabrication of white QDLEDs.The rating of perceived exertion (RPE) indicates the feeling of fatigue. However, hypoxia worsens the condition and can worsen RPE. We evaluated whether carbohydrate and glutamine supplementation alters RPE and physiological markers in running at 70% peak oxygen uptake until exhaustion in a simulated altitude of 4500 m. Nine volunteers underwent three running tests at 70% peak oxygen uptake until exhaustion (1) hypoxia and placebo, (2) hypoxia and 8% maltodextrin, and (3) hypoxia after six days of glutamine supplementation (20 g/day) and 8% maltodextrin. The exercise and supplementation were randomized and double-blinded. Lactate, heart rate, haemoglobin O2 saturation (SpO2%), and RPE (6-20 scale) were analyzed at the 15th and 30th min. The level of significance was set at p ≤ 0.05. SpO2% decreased at the 15th and 30th minutes compared to resting in placebo, carbohydrate, and glutamine supplementation. RPE increased at the 30th minute compared to the 15th minute in placebo and carbohydrate supplementation; however, there was no difference in the glutamine supplementation condition. Heart rate and lactate increased after the 15th and 30th minutes compared to resting, similar to the three conditions studied. We conclude that previous supplementation with glutamine and carbohydrate during intense exercise in hypoxia similar to 4500 m can attenuate the increase in RPE by the increase in glycemia and can be a useful strategy for people who exercise in these conditions.In the paper, the reliability of a spatial tubular structure of a bus safety frame formed of different steel profiles is discussed. A methodology for the bus safety structure modeling is presented herein by applying numerical methods that enable us to simulate virtually a test for assessing bus rollover crashworthiness according to the United Nations Economic Commission for Europe (UNECE) Regulation No. 66, and also to assess and ensure the reliability and safety of the structure under operating conditions. The simulation has been performed by applying the mixed method of kinematical analysis and finite elements. In the course of the calculations, physical and geometrical non-linearity of materials was assessed. In addition, an experimental rollover test according to UNECE Regulation No. 66 was performed in this work, striving to verify the provided methodology for modeling by applying numerical methods. For the experiment, an identical safety structure and a rollover stand (identical to the one used in modeling) were used. The rollover test was shot by a Phantom v711 high-speed camera. In the paper, the results of kinematical and dynamic analysis from applying the finite element method and the ones of the experimental test, as well as their comparisons, are provided. It is assessed whether the developed safety structure model is reliable and suitable for use.

Autoři článku: Cravensolomon0475 (Nyholm Medeiros)