Cravenkarlsson4656
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. A-83-01 manufacturer One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.The purpose of this study was to determine the effects of glass transition and hydration on the storage stability of baker's dry yeast (Saccharomyces cerevisiae). The glass transition temperature (Tg ) of the yeast decreased with increase in water activity (aw ), and aw at which glass transition occurs at 25 °C was determined as the critical aw (awc ). From mechanical relaxation measurements at 25 °C, the yeast exhibited a large mechanical relaxation above the awc , and the degree of mechanical relaxation increased gradually with increasing aw . This behavior corresponded to a gradual increase in molecular mobility with increasing aw in the rubbery liquid state. Freezable water was observed from aw ≥0.810, and the proportion of freezable water increased with increasing aw . Examination of the effect of aw on the residual biological activity of yeast samples stored at 25 °C for 30 days revealed maximum residual biological activity at aw = 0.225 to 0.432. In the lower aw range, the residual biological activity eduction in the molecular mobility, which is otherwise ordinarily increased due to the glass-to-rubber transition, is prevented in yeast. It is possible that the crystallization of amorphous sugar can be prevented by yeast extract. The suggested effect is expected to result in enhanced quality of carbohydrate-based foods.Ovarian cancer (OC) remains the leading cause of cancer-related death among gynecological cancers. The present study examined the role of collagen type V alpha 1 (COL5A1) and the characteristics of COL5A1 as an oncogenic protein in OC. The association of COL5A1 with paclitaxel (PTX)-resistance and stemness in OC was also studied and the multidatabase and big data analyses of the prognostic value, coexpression network, genetic alterations, and tumor-infiltrating immune cells of COL5A1 were elucidated. We found that COL5A1 expression was high in OC cells and tissues. Knockdown of COL5A1 inhibited the proliferation and migration of OC cells. Further study also showed that COL5A1 was overexpressed in PTX-resistant OC cells compared to respective PTX-sensitive cells. Additionally, COL5A1 was more enriched in OC stem cell-like cells. Silencing COL5A1 expression decreased the OC cell resistance to PTX and inhibited the ability of OC-spheroid formation. Survival analysis predicted that the elevated COL5A1 expression was associated with a worse survival outcome and correlated to the tumor stage of OC patients. The estimating relative subsets of RNA transcripts (CIBERSORT) algorithm analysis also unveiled the correlation of several tumor-infiltrating immune cells with the expression of COL5A1. Taken together, our data demonstrate that COL5A1 is a biomarker to predict OC progression and PTX-resistance and represents a promising target for OC treatment.Species within the genus Chara have variable salinity tolerance. Their close evolutionary relationship with embryophytes makes their study crucial to understanding the evolution of salt tolerance and key evolutionary processes shared among the phyla. We examined salt-tolerant Chara longifolia and salt-sensitive Chara australis for mechanisms of salt tolerance and their potential role in adaptation to salt. We hypothesize that there are shared mechanisms similar to those in embryophytes, which assist in conferring salt tolerance in Chara, including a cation transporter (HKT), a Na+ /H+ antiport (NHX), a H+ -ATPase (AHA), and a Na+ -ATPase (ENA). Illumina transcriptomes were created using cultures grown in freshwater and exposed to salt stress. The presence of these candidate genes, identified by comparing with genes known from embryophytes, has been confirmed in both species of Chara, with the exception of ENA, present only in salt-tolerant C. longifolia. These transcriptomes provide evidence for the contribution of these mechanisms to differences in salt tolerance in the two species and for the independent evolution of the Na+ -ATPase. We also examined genes that may have played a role in important evolutionary processes, suggested by previous work on the Chara braunii genome. Among the genes examined, cellulose synthase protein (GT43) and response regulator (RRB) were confirmed in both species. Genes absent from all three Chara species were members of the GRAS family, microtubule-binding protein (TANGLED1), and auxin synthesizers (YUCCA, TAA). Results from this study shed light on the evolutionary relationship between Chara and embryophytes through confirmation of shared salt tolerance mechanisms, as well as unique mechanisms that do not occur in angiosperms.Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.Particular attention is paid to the risk of carbon dioxide (CO2 ) leakage in geologic carbon sequestration (GCS) operations, as it might lead to the failure of sequestration efforts and to the contamination of underground sources of drinking water. As carbon dioxide would eventually reach shallower formations under its gaseous state, understanding its multiphase flow behavior is essential. To this aim, a hypothetical gaseous leak of carbon dioxide resulting from a well integrity failure of the GCS system in operation at Hellisheiði (CarbFix2) is here modeled. Simulations show that migration of gaseous carbon dioxide is largely affected by formation stratigraphy, intrinsic permeability, and retention properties, whereas the initial groundwater hydraulic gradient (0.0284) has practically no effect. In two different scenarios, about 18.3 and 30.6% of the CO2 that would have been injected by the GCS system for 3 days could be potentially released again into the atmosphere due to a sustained leakage of the same duration. As the gaseous leak occurs, the aquifer experiences high pressure buildups, and the presence of a less conductive layer further magnifies these. Strikingly, the dimensional analysis showed that buoyant and viscous forces can be comparable over time within the predicted gaseous plumes, even far from the leakage source. Local pressure gradients, buoyant, viscous, and capillary forces all play an important role during leakage. Therefore, neglecting one or more of these contributions might lead to a partial prediction of gaseous CO2 flow behavior in the subsurface, giving space to incorrect interpretations and wrong operational choices.Mitochondrial disorders are monogenic disorders characterized by a defect in oxidative phosphorylation and caused by pathogenic variants in one of over 340 different genes. The implementation of whole-exome sequencing has led to a revolution in their diagnosis, duplicated the number of associated disease genes, and significantly increased the diagnosed fraction. However, the genetic etiology of a substantial fraction of patients exhibiting mitochondrial disorders remains unknown, highlighting limitations in variant detection and interpretation, which calls for improved computational and DNA sequencing methods, as well as the addition of OMICS tools. More intriguingly, this also suggests that some pathogenic variants lie outside of the protein-coding genes and that the mechanisms beyond the Mendelian inheritance and the mtDNA are of relevance. This review covers the current status of the genetic basis of mitochondrial diseases, discusses current challenges and perspectives, and explores the contribution of factors beyond the protein-coding regions and monogenic inheritance in the expansion of the genetic spectrum of disease.High transmissivity aquifers typically have low hydraulic gradients (i.e., a flat water table). Measuring low gradients using water levels can be problematic because measurement error may be greater than the true difference in water levels (i.e., a low signal-to-noise ratio). In this study, the feasibility of measuring a hydraulic gradient in the range of 10-6 to 10-5 m/m was demonstrated. The study was performed at a site where the depth to water from land surface ranged from 40.1 to 94.2 m and the aquifer transmissivity was estimated at 41,300 m2 /d (hydraulic conductivity of 18,800 m/d). The goals of the study were to reduce measurement error as much as practicable and assess the importance of factors affecting water level measurement accuracy. Well verticality was the largest source of error (0.000 to 0.168 m; median of 0.014 m), and geodetic survey of casing elevations was the next most important source of error (0.002 to 0.013 m; median of 0.005 m). Variability due to barometric pressure fluctuations was not an important factor at the site.