Crafttyler4112

Z Iurium Wiki

The population genetic structure of invasive species can be strongly affected by environmental and landscape barriers to dispersal. Disentangling the relative contributions of these factors to genetic divergence among invading populations is a fundamental goal of landscape genetics with important implications for invasion management. Here, we relate patterns of genetic divergence in a global invasive agricultural pest, Colorado potato beetle (CPB; Leptinotarsa decemlineata), to environmental and landscape factors along an invasion front in Northwestern China. We first used microsatellite markers and spatial-temporal samples to assess broad patterns of genetic diversity as well as fine-scale changes in patterns of genetic divergence. We then distinguished the relative contributions of five factors to genetic divergence among front populations geographic distance (isolation by distance), climate dissimilarity (isolation by environment), and least-cost distances (isolation by resistance) modeled with three factodly, our findings can guide decisions about future land management for mitigating further spread.Uncertainty hampers innovative mixed-fisheries management by the scales at which connectivity dynamics are relevant to management objectives. The spatial scale of sustainable stock management is species-specific and depends on ecology, life history and population connectivity. One valuable approach to understand these spatial scales is to determine to what extent population genetic structure correlates with the oceanographic environment. Here, we compare the level of genetic connectivity in three codistributed and commercially exploited demersal flatfish species living in the North East Atlantic Ocean. Population genetic structure was analysed based on 14, 14 and 10 neutral DNA microsatellite markers for turbot, brill and sole, respectively. We then used redundancy analysis (RDA) to attribute the genetic variation to spatial (geographical location), temporal (sampling year) and oceanographic (water column characteristics) components. The genetic structure of turbot was composed of three clusters and correlated with variation in the depth of the pycnocline, in addition to spatial factors. The genetic structure of brill was homogenous, but correlated with average annual stratification and spatial factors. In sole, the genetic structure was composed of three clusters, but was only linked to a temporal factor. We explored whether the management of data poor commercial fisheries, such as in brill and turbot, might benefit from population-specific information. We conclude that the management of fish stocks has to consider species-specific genetic structures and may benefit from the documentation of the genetic seascape and life-history traits.Understanding local adaptation to climate is critical for managing ecosystems in the face of climate change. While there have been many provenance studies in trees, less is known about local adaptation in herbaceous species, including the perennial grasses that dominate arid and semiarid rangeland ecosystems. We used a common garden study to quantify variation in growth and drought resistance traits in 99 populations of Elymus elymoides from a broad geographic and climatic range in the western United States. Ecotypes from drier sites produced less biomass and smaller seeds, and had traits associated with greater drought resistance small leaves with low osmotic potential and high integrated water use efficiency (δ13C). Seasonality also influenced plant traits. Plants from regions with relatively warm, wet summers had large seeds, large leaves, and low δ13C. Irrespective of climate, we also observed trade-offs between biomass production and drought resistance traits. Together, these results suggest that much of the phenotypic variation among E. elymoides ecotypes represents local adaptation to differences in the amount and timing of water availability. In addition, ecotypes that grow rapidly may be less able to persist under dry conditions. RP-6306 supplier Land managers may be able to use this variation to improve restoration success by seeding ecotypes with multiple drought resistance traits in areas with lower precipitation. The future success of this common rangeland species will likely depend on the use of tools such as seed transfer zones to match local variation in growth and drought resistance to predicted climatic conditions.Crop varieties carrying qualitative resistance to targeted pathogens lead to strong selection pressure on parasites, often resulting in resistance breakdown. It is well known that qualitative resistance breakdowns modify pathogen population structure but few studies have analyzed the consequences on their quantitative aggressiveness-related traits. The aim of this study was to characterize the evolution of these traits following a resistance breakdown in the poplar rust fungus, Melampsora larici-populina. We based our experiment on three temporal populations sampled just before the breakdown event, immediately after and four years later. First, we quantified phenotypic differences among populations for a set of aggressiveness traits on a universally susceptible cultivar (infection efficiency, latent period, lesion size, mycelium quantity, and sporulation rate) and one morphological trait (mean spore volume). Then, we estimated heritability to establish which traits could be subjected to adaptive evolution and tested for evidence of selection. Our results revealed significant changes in the morphological trait but no variation in aggressiveness traits. By contrast, recent works have demonstrated that quantitative resistance (initially assumed more durable) could be eroded and lead to increased aggressiveness. Hence, this study is one example suggesting that the use of qualitative resistance may be revealed to be less detrimental to long-term sustainable crop production.Adaptation to environmental change requires that populations harbor the necessary genetic variation to respond to selection. However, dispersal-limited species with fragmented populations and reduced genetic diversity may lack this variation and are at an increased risk of local extinction. In freshwater fish species, environmental change in the form of increased stream temperatures places many cold-water species at-risk. We present a study of rainbow darters (Etheostoma caeruleum) in which we evaluated the importance of genetic variation on adaptive potential and determined responses to extreme thermal stress. We compared fine-scale patterns of morphological and thermal tolerance differentiation across eight sites, including a unique lake habitat. We also inferred contemporary population structure using genomic data and characterized the relationship between individual genetic diversity and stress tolerance. We found site-specific variation in thermal tolerance that generally matched local conditions and morphological differences associated with lake-stream divergence.

Autoři článku: Crafttyler4112 (Rohde McLean)