Coughlinbruun3969

Z Iurium Wiki

The Gram-negative bacteria Photorhabdus lives in a symbiotic relationship with the insect-pathogenic Heterorhabditis nematodes and produces numerous hydrolytic enzymes, secondary metabolites and protein toxins. Seven Photorhabdus strains were previously isolated from the Heterorhabditis nematodes collected from different geographical regions of India. The strains IARI-SGMG3, IARI-SGHR2, IARI-SGHR4, IARI-SGMS1 and IARI-SGGJ2 were identified as P. akhurstii, whereas IARI-SGLDK1 and IARI-SGHP1 were identified as P. laumondii subsp. laumondii and P. laumondii subsp. clarkeii, respectively. A new and previously unreported 35 kDa molecular weight protein toxin 'Galtox' was identified from these Photorhabdus strains. The nucleotide sequences of the toxin gene from seven Photorhabdus strains were PCR amplified, sequenced, cloned into pET protein expression vector, and the protein toxin was expressed and purified. The Galtox sequence from various strains showed variations in sequence and toxicity against Galleria mellonella. The injection of purified Galtox protein into the 4th instar larvae showed median lethal dose (LD50) values of 2.39-26.08 ng toxin/g G. mellonella bodyweight after 48 h. The protein injection killed the insects quickly and exhibited a median lethal time (LT50) of 12-60 h when injected at the rate of 3.1-31.2 ng toxin/g G. NVL-655 research buy mellonella bodyweight. Galtox protein sequence analysis indicated similarity to several bacterial toxin-related protein domains, such as 6rgnA domain of Bordetella membrane targeting toxin BteA, 6gy6 domain of Xenorhabdus α-Xenorhabdolysins, 4mu6A and 4xa9a domains similar to effector protein LegC3 from Legionella pneumophila and 1cv8.1 domain of staphylococcal cysteine proteinase staphopain B. The mode of action of Galtox needs to be understood to enable its use for the management of agricultural insect-pests.Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and A. parasiticus, and is a known carcinogen in humans and animals. High voltage atmospheric cold plasma (HVACP) technology has already shown promise to decontaminate AFB1 in food and feed. This study aimed to investigate the cytotoxicity of AFB1 after HVACP treatment. AFB1 (100 μM) was treated at 85 kV with HVACP for 0, 2, 5, 10, and 20 min. HepG2 cells were exposed to HVACP-treated AFB1 for 72 h and assessed for cell viability, caspase-3 activity, DNA fragmentation, and protein carbonyls for each treatment time. Cell viability, caspase-3 activity, DNA fragmentation levels, and protein carbonyls contents of HepG2 cells exposed to HVACP-treated AFB1 after 20 min was not significantly different compared to non-exposed HepG2 cells (P > 0.05). However, their contents were significantly higher in non-exposed cells compared to the other HVACP treatment times (P less then 0.01). Twenty minutes of HVACP treatment for AFB1 significantly reduced AFB1 cytotoxicity and oxidative damage and showed potential as a safe aflatoxin decontamination technology.Cone snails are predatory gastropod mollusks that are distributed in all tropical marine environments and contain small peptides (conotoxins) in their venom to capture prey. However, the biochemical and molecular aspects of conotoxins remain poorly understood. In this article, a novel α4/7-conotoxin, Lv1d, was obtained from the venom duct cDNA library of the worm-hunting Conus lividus collected from the South China Sea. The cDNA of Lv1c encodes a 65 residue conopeptide precursor, which consists of a 21 residue signal peptide, a 27 residue Pro region, and 17 residues of mature peptide. The mature peptide Lv1d was chemically synthesized according to the sequence GCCSDPPCRHKHQDLCG. It was found that 10 μM Lv1d can completely inhibit frog sciatic nerve-gastrocnemius muscle contractility within 60 min. Moreover, 100 μg/kg Lv1d showed good analgesic effects in mouse hot plate model and formalin test. Patch clamp experiments showed that 5 μM Lv1d can inhibit the cholinergic microexcitatory postsynaptic currents (mEPSCs) requency and amplitude of projection neurons in Drosophila. In conclusion, the synthesis of Lv1d and its biological and physiological data might contribute to the development of this peptide as a novel potential drug for therapeutic applications. This finding also expands the knowledge of the targeting mechanism of the α4/7-subfamily conotoxins.BMAA (ß-N-methylamino-L-alanine) was originally found in the seeds of cycad Cycas micronesica in the 1960s. Some years later it was discovered that the amino acid is genuinely produced by endosymbiotic cyanobacteria. Further research has proven the neurotoxic activity of BMAA, leading to neurodegenerative disease diagnosed as amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC). The aim of the present work was to examine the occurrence of BMAA in samples from Polish waterbodies. Both, the field cyanobacterial samples and the isolated cyanobacterial strains were analyzed. Also mussel and fish samples were checked for the BMAA accumulation. The additional goal was to assess the biological activity of BMAA in in vivo and in vitro assays. In waters of Northern Poland, BMAA was detected in cyanobacteria from Synechococcales, Oscillatoriales and Nostocales orders. The free and protein-bound forms of BMAA were detected in 9 and 4 (of 37) environmental samples, respectively. Both forms of BMAA were also identified in 2 out of 21 cyanobacterial strains isolated from Polish waterbodies. Our analyses of cyanobacterial material did not confirm the presence of soluble protein-bound form of BMAA. The amino acid was detected neither in the tissues of fish nor in the mussels. Biological activity of BMAA was tested with the application of hippocampal neural cell line HT22 and crustaceans Thamnocephalus platyurus, Artemia franciscana and Daphnia magna. Among them, only D. magna assay revealed toxic effects of BMAA. The results of our research did not demonstrate the widespread production of BMAA by cyanobacteria from Northern Poland waters.Chemical compounds from skin secretions from toads of Bufonidae family have been long-studied. In the search for new molecules with pharmacological action, the 3β-OH groups of bufadienolides are commonly derivatised using acetyl groups. This work described the isolation and/or structural elucidation of isolated and derivatised compounds from the venom of the Brazilian anuran Rhinella marina, and their evaluation in in vitro assays. In the methanolic extract of the R. marina venom, compound cholesterol (1) was isolated from the CRV-52 fraction by classic column chromatography, dehydrobufotenine (2) by Sephadex LH-20 from the CRV-28 fraction, and a mix of suberoyl arginine (3) and compound 2 was obtained from the CRV-6-33 fraction. The compounds marinobufagin (4), telocionbufagin (5) and bufalin (6) were isolated by classic column chromatography, followed by separation via HPLC in the CRV-70 fraction, and the compound marinobufotoxin (9) was isolated by classic column chromatography in the CRV-6 fraction, here being isolated for the first time in R.

Autoři článku: Coughlinbruun3969 (Mayer Sheridan)