Cottonpaulsen7986

Z Iurium Wiki

We investigate an anomalous scattering phenomenon exhibited by a lossless system based on metasurfaces. Electromagnetic energy is neither reflected nor transmitted but stored within the system to be available again at a different time. We analytically derive the proper excitation conditions and verify the response of the system through a proper set of full-wave simulations, demonstrating the key role of the metasurface in enabling such a zero-scattering condition. The practical feasibility and the opportunities offered by the proposed metasurface-based system may open the door to the design of virtual absorbers with dynamic properties in energy absorbing, storing, and releasing.Combined compression-tension strain sensors with a range of 1 micro to a maximum of 20 milli-strain based on non-uniform multiple-core-offset fibers have been realized. A large strain range with high resolution is ideal for monitoring deformation of steel structures where a large compressive and tensile strain co-exists. Thanks to core-offset splicing of non-uniform fiber segments, unique asymmetric waveguides reduce the degeneracy of each section, realizing a reflection spectrum with a large range and irregular shape. Furthermore, enhanced multi-mode interference induced from high-order modes in silica cladding and air results in the large strain range with high resolution in both compression and tension regions. The sensitivity of 7.93 pm/µε with a strain step of 1.7 µε is achieved for micro-strain measurement. For milli-strain measurement, a strain coefficient of 1.298 nm/mε over a tensile strain of 13.2 mε is realized; in the compressive strain case, a coefficient of -1.251nm/mε over compression of 20.1 mε is observed.We propose and experimentally demonstrate a parity-time (PT)-symmetric frequency-tunable optoelectronic oscillator (OEO) in which the PT symmetry is implemented based on a single dual-polarization optical loop. By employing the inherent birefringence of a z-cut lithium niobate (LiNbO3) phase modulator (PM), two mutually coupled optoelectronic loops supporting orthogonally polarized light waves with one experiencing a gain and the other a loss are implemented. By controlling the gain, loss, and the coupling coefficients between the two loops, the PT symmetry breaking condition is met, which enables the OEO to operate in single mode without using an ultranarrow passband optical or microwave filter. The frequency tunability is realized using a microwave photonic filter (MPF) implemented using the PM and a phase-shifted fiber Bragg grating (PS-FBG). The proposed PT-symmetric OEO is experimentally evaluated. A stable and frequency-tunable microwave signal from 2 to 12 GHz is generated. The phase noise of the generated signal at 11.8 GHz is measured, which is -124dBc/Hz at a frequency offset of 10 kHz.The higher capability of optical vortex beams of penetrating turbid media (e.g., biological fluids) with respect to the conventional Gaussian beams is, for the first time to our knowledge, demonstrated in the 1.3 µm wavelength range which is conventionally used for optical coherence tomography procedures in endoscopic intravascular scenarios. Gemcitabine The effect has been demonstrated by performing transmittance measurements through suspensions of polystyrene microspheres in water with various particulate concentrations and, in reflection, by using samples of human blood with different thicknesses. The reduced backscattering/increased transmittance into such highly scattering media of Laguerre-Gaussian beams with respect to Gaussian ones, in the near infrared wavelength region, could be potentially exploited in clinical applications, leading to novel biomedical diagnoses and/or procedures.In this Letter, we present a method for jointly designing a coded aperture and a convolutional neural network for reconstructing an object from a single-shot lensless measurement. The coded aperture and the reconstruction network are connected with a deep learning framework in which the coded aperture is placed as a first convolutional layer. Our co-optimization method was experimentally demonstrated with a fully convolutional network, and its performance was compared to a coded aperture with a modified uniformly redundant array.We present a few-mode frequency-modulated receiver for light detection and ranging (LiDAR). We show that using a few-mode local oscillator (LO) with spatial modes at different frequencies at the receiver can significantly improve the performance of the LiDAR detection range. A preferred receiver architecture features LO modes with unequal frequency separations based on optical orthogonal codes (OOC) to allow range detection via cross correlation. The required signal-to-noise ratio (SNR) for the frequency-modulated continuous wave (FMCW) LiDAR decreases with the number of LO modes. This receiver can have a potential impact in the area of automotive LiDARs.We propose and demonstrate a subwavelength hole defect assisted microring resonator (SHDAMR) structure. With the manipulated modal coupling between two degenerate counterpropagating modes induced by a subwavelength hole defect embedded in the microring waveguide, the SHDAMR structure shows a rectangular resonance lineshape instead of the Lorentzian resonance lineshape of a conventional microring. As a proof of concept, the SHDAMR structure is fabricated on the Si3N4 waveguide platform, for achieving a rectangular filter with a 3-dB bandwidth of 2.03 GHz and an improved shape factor. The demonstrated SHDAMR structure shows the advantages of compact footprint, simplified tunability, and large tolerance of fabrication errors, showing great potential for various applications.We exploit the anisotropic plasmonic behavior of gold nanorods (AuNRs) to obtain a waveguide with a nonlinear coefficient dependent on both the frequency and polarization of incident light. The optical properties of the waveguide are described by an extension of the Maxwell Garnett model to nonlinear optics and anisotropic nanoparticles. Then, we perform a study of modulation instability (MI) in this system by resorting to the recently introduced photon-conserving nonlinear Schrödinger equation (pcNLSE), as the pcNLSE allows us to model propagation in nonlinear waveguides of arbitrary sign and frequency dependence of the nonlinear coefficient. Results show that the anisotropy of the nanorods leads to two well-differentiated MI regimes, a feature that may find applications in all-optical devices.Two-wavelength fringe projection profilometry (FPP) unwraps a phase with the unambiguous phase range (UPR) of the least common multiple (LCM) of the two wavelengths. It is accurate, convenient, and robust, and thus plays an important role in shape measurement. However, when two non-coprime wavelengths are used, only a small UPR can be generated, and the unwrapping performance is compromised. In this Letter, a spatial pattern-shifting method (SPSM) is proposed to generate the maximum UPR (i.e., the product of the two wavelengths) from two non-coprime wavelengths. For the first time, to the best of our knowledge, the SPSM breaks the constraint of wavelength selection and enables a complete (i.e., either coprime or non-coprime) two-wavelength FPP. The SPSM, on the other hand, only requires spatially shift of the low-frequency pattern with the designed amounts and accordingly adjusting the fringe order determination, which is extremely convenient in implementation. Both numerical and experimental analyses verify its flexibility and correctness.Conventional high-level sensing techniques require high-fidelity images as input to extract target features. The images are produced by either complex imaging hardware or high-complexity reconstruction algorithms. In this Letter, we propose single-pixel sensing (SPS) that performs high-level sensing directly from a small amount of coupled single-pixel measurements, without the conventional image acquisition and reconstruction process. The technique consists of three steps, including binarized light modulation at ∼22.7kHz refresh rate, single-pixel coupled detection with a wide working spectrum and high signal-to-noise ratio, and end-to-end deep-learning-based decoding that reduces both hardware and software complexity. Also, the binarized modulation patterns are optimized with the decoding network by a two-step training strategy, leading to the least required measurements and optimal sensing accuracy. The effectiveness of SPS is experimentally demonstrated on the classification task of the handwritten MNIST dataset, and 96% classification accuracy at ∼1kHz is achieved. The reported SPS technique is a novel framework for efficient machine intelligence, with data-reduced acquisition and load-relieved processing.In this Letter, two gyro outputs containing identical rotation rates are produced by a twin-peaks light source with peak wavelengths of 1530 nm and 1560 nm. We demonstrate that the two outputs' ratio κ can compensate for the temperature-induced scale factor drift in an interferometric fiber-optic gyroscope (IFOG). When the temperature ranged from -10∘C to 50°C, the scale factor drift after compensation was about 30 times less than that before compensation, and the minimum drift was ±7.7ppm at the rotation rate of 100°/s.We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 µm core diameter. We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspectives for many practical applications such as long-distance remote sensing where high power and low noise are paramount.We study, to the best of our knowledge, the first observations of light propagation in synthetic photonic lattice with anti-parity-time symmetry by tuning the gain or loss of two coupled fiber rings alternatively and corresponding phase distribution periodically. By tuning the phase φ and the wave number Q in the lattice, asymmetric transmission of the light field can be achieved for both long and short loops when φ≠nπ/2 (n is an integer). Further investigations demonstrate that asymmetric localization of the light field in the long loop and symmetric diffraction-free transmission in two loops can both be realized by changing these two parameters. Our work provides a new method to obtain anti-parity-time symmetry in synthetic photonic lattice and paves a broad way to achieve novel optical manipulation in photonic devices.The realization of lanthanide-doped upconversion nanocrystals embedded in a robust and transparent solid medium is highly desired to achieve deep UV (45cm-1) at ∼290nm can be obtained.

Autoři článku: Cottonpaulsen7986 (McGarry Terkelsen)