Cortezhovmand9875

Z Iurium Wiki

with BNIP3 and NIX through hydrogen bond. Tan I induce mitophagy could be prevented by BNIP3 and NIX siRNA transfection.

Tan I induced the BNIP3/NIX-mediated mitophagy, and reprogrammed the mitochondrial metabolism in cervical cancer cells, thus inhibiting metastasis.

Tan I induced the BNIP3/NIX-mediated mitophagy, and reprogrammed the mitochondrial metabolism in cervical cancer cells, thus inhibiting metastasis. .Maize and grass silages are important dietary components for ruminant livestock that influence the quality of animal products for human consumption, such as milk, in many parts of the world. Infection of plants by fungi able to produce mycotoxins, either in the field or post-harvest, can result in a decrease of silage nutritional quality and, consequently, in milk quality. In this study, 45 maize and grass silage samples were collected from 25 dairy farms located in the north of Portugal. The occurrence of fungi was evaluated in samples, the most frequently isolated species being Aspergillus fumigatus, Dipodascus geotrichum, Mucor circinelloides, Penicillium paneum, and Aspergillus flavus. The mycotoxigenic profile of the fungal species was studied using the ultra-high-performance liquid chromatography coupled to mass spectrometry-ion trap-time-of-flight (UHPLC-MS-IT-TOF) detection. In addition, a new method based on a QuEChERS extraction followed by the UHPLC- tandem mass spectrometry (UHPLC-MS/MS) detection was developed for simultaneous analysis of 39 mycotoxins in silage. A high co-occurrence of Fusarium mycotoxins was found, although at low levels of contamination. check details Deoxynivalenol and beauvericin were found in more than 82% of maize silage samples. It can be highlighted the low occurrence of Penicillium and Aspergillus toxins in the maize and grass silages studied despite the frequent detection of species of both genera.Louisiana estuaries are important habitats in the northern Gulf of Mexico, a region undergoing significant and sustained human- and climate-driven changes. This paper synthesizes data collected over multiple years from four Louisiana estuaries - Breton Sound, Terrebonne Bay, the Atchafalaya River Delta Estuary, and Vermilion Bay - to characterize trends in phytoplankton biomass, community composition, and the environmental factors influencing them. Results highlight similarities in timing and composition of maximum chlorophyll, with salinity variability often explaining biomass trends. Distinct drivers for biomass versus community structure were observed in all four estuarine systems. Systems shared a lack of significant correlation between river discharge and overall phytoplankton biomass, while discharge was important for understanding community composition. Temperature was a significant explanatory variable for both biomass and community composition in only one system. These results provide a regional view of phytoplankton dynamics in Louisiana estuaries critical to understanding and predicting the effects of ongoing change.Harbours are located in major urban centres around the world and are of great economic importance to the cities in their surroundings. However, the intense traffic of boats and ships can generate environmental impacts that can directly affect the local biota as well as the population that lives in surrounding areas. Therefore, this work aimed to analyse the surface sediment of the Niterói Harbour using chemical, biological and micropalaeontological tools to investigate the environmental condition of this important harbour in Rio de Janeiro State. The pseudototal trace metal data analysed in the surface samples showed values far above those of the greater Guanabara Bay background. These data were corroborated by a high mortality rate of Artemia sp. and elevated presence of the bacterium Vibrio fischeri, indicating a high rate of local pollution. Dinoflagellate cysts also showed a direct response to high values of pseudototal trace metals. The data obtained in this study emphasize a need for greater monitoring of ports since the experience gained through this study in a Brazilian harbour can serve as an example for the management of other harbours located in large urban centres around the world.Sedimentary organic pollution in the urban reaches of the Thames estuary is changing from fossil fuel hydrocarbons to emerging synthetic chemicals. De-industrialisation of London was assessed in three cores from Chiswick (Ait/Eyot) mud island using pharmaceuticals, faecal sterols, hydrocarbons (TPH, PAH), Black Carbon (BC) and organotins (TBT). These ranked in the order; BC 7590-30219 mg/kg, mean 16,000 mg/kg > TPH 770-4301, mean 1316 mg/kg > Σ16PAH 6.93-107.64, mean 36.46 mg/kg > coprostanol 0.0091-0.42 mg/kg, mean of 0.146 mg/kg > pharmaceuticals 2.4-84.8 μg/kg, mean 25 μg/kg. Hydrocarbons co-varied down-profile revealing rise (1940s), peak (1950s -1960s) and fall (1980s) and an overall 3 to 25-fold decrease. In contrast, antibiotics, anti-inflammatory (ibuprofen, paracetamol) and hormone (17β-estradiol) increased 3 to 50-fold toward surface paralleling increasing use (1970s-2018). The anti-epileptics, carbamazepine and epoxcarbamazepine showed appreciable down-core mobility. Faecal sterols confirmed non-systematic incorporation of treated sewage. Comparison to UK sediment quality guidelines indicate exceedance of AL2 for PAH whereas TBT was below AL1.To investigate the long-term effects of urbanization and industrialization on coastal trace metal contamination, two sediment cores, Q21 (representing 1965-2018) and Q23 (representing 1986-2018), collected from the adjacent coasts of the east old town and west new area of Qingdao were analyzed. Although the concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sc, and Zn were higher in Core Q21, the increasing trends in their concentrations and contamination levels were more obvious in Q23, especially since the 2000s. Moreover, the urbanization rates of the new area (1978-2017) were significantly positively correlated with the historical metal concentrations in Q23. Affected by the rapid socio-economic development in the new area, the combined excessive concentrations of the eight metals (excluding Sc) increased faster in Q23 (0.14-78.4 mg/kg) than Q21 (0.58-45.3 mg/kg). Overall, the sediment Core Q23 experienced higher trace metal contamination and ecological risks than Core Q21.Estuaries experience variable physicochemical conditions, especially after hurricanes and due to anthropogenic sources of pollution. Their microbial communities are not as well understood in terms of community structure and diversity, particularly in response to stresses from pollution and severe events. This study presents a 16S rRNA-based description of sediment microbial communities in the Houston Ship Channel-Galveston Bay estuary after Hurricane Harvey in 2017. A total of 11 sites were sampled, and microbial genomic DNA was isolated from sediment. The presence and abundance of specific bacterial and archaeal taxa in the sediment indicated pollutant inputs from identified legacy sources. The abundance of certain microbial groups was explained by the mobilization of contaminated sediment and sediment transport due to Harvey. Several microorganisms involved in the biodegradation of xenobiotics were observed. The spatial occurrence of Dehalococcoidia, a degrader of persistent polychlorinated compounds, was explained in relation to sediment properties and contaminant concentrations.Floating marine litter (FML) surveys were conducted in the near shore waters of Mombasa, Kilifi and Kwale Counties of Kenya through trawling using a manta net. A mean density of 26,665 ± 2869 items km-2 composed of 34.8% hard plastic, 40.5% soft plastics and 22.0% plastic lines/fibers was reported in this study. Litter densities in Kwale, Kilifi and Mombasa Counties were not influenced by monsoons, however, litter composition was influenced by monsoons with NEM and SEM being dominated mainly by hard plastics and soft plastics respectively. Litter categories diversity, evenness and richness were also not influenced by the monsoons during both NEM (1.01, 0.78 and 3, respectively) and SEM (1.09, 0.78 and 4, respectively). Fishing and recreational beaches had higher litter densities during NEM compared to SEM attributed to higher beach visitation and increased fishing activities during the calmer NEM season.The factors involved in DNA damage recognition and repair are tightly regulated to ensure proper repair pathway choice. The mechanism(s) that determines the cell cycle-dependent turnover of these DNA damage repair factors remains unclear. Here, we show that Sp1, which regulates double-strand break (DSB) repair pathway choice through localization of 53BP1, is sumoylated at Lys16 following DNA damage; Sp1 sumoylation is required for its degradation and the removal of both Sp1 and 53BP1 from DSB sites. Induction of DNA DSBs induces Sp1 phosphorylation at DSBs by ATM, which is necessary for the subsequent sumoylation of Sp1. In addition to this damage-induced ATM-dependent phosphorylation and sumoylation, phosphorylation of Sp1 at Ser59 by Cyclin A/cdk2 upon entry into S phase is necessary for recognition, ubiquitination and degradation by the SUMO-targeted E3 ubiquitin ligase, RNF4. Eliminating Sp1 sumoylation by mutation of Sp1 at Lys16 (K16R) precluded removal of both Sp1 and 53BP1 from DSBs in S phase, resulting in decreased BRCA1 recruitment and defective homologous recombination (HR). Like BRCA1 deficient cells, cells expressing Sp1K16R are sensitive to PARP inhibition due to failure to degrade Sp1 and recruit BRCA1 resulting in defective HR that is rescued by knockdown of 53BP1. These results reveal the dynamic regulation of Sp1 and its role in the assembly and disassembly of DNA repair factors at DSBs.Gastric cancer (GC) is the third leading cause of cancer-associated mortality worldwide. The platinum derivative oxaliplatin is widely applied in standard GC chemotherapy but recurrence and metastasis are common in advanced GC cases due to intrinsic or induced chemoresistance. Poly(ADP-Ribose) polymerase 1 (PARP1) is an enzyme crucial for repairing DNA damage induced by platinum compounds, which undermines the effectiveness of platinum-based chemotherapy. Data from the current study showed that topoisomerase IIβ binding protein 1 (TOPBP1), an interacting partner of topoisomerase IIβ, is highly expressed in oxaliplatin-resistant GC (OR-GC) cells and promotes PARP1 transcription through direct binding to its proximal promoter region. Furthermore, AKT-mediated phosphorylation of TOPBP1 at Ser1159 was indispensable for inducing PARP1 expression in OR-GC cells. Disruption of the TOPBP1/PARP1 regulatory pathway decreased cell viability and augmented apoptosis of OR-GC cells. The positive correlation between TOPBP1 and PARP1 was confirmed using both the TCGA database and immunohistochemical analysis of GC tissues. In GC patients receiving oxaliplatin treatment, high expression of TOPBP1 or PARP1 was associated with poor prognosis. Our finding that the TOPBP1/PARP1 pathway facilitates acquisition of oxaliplatin resistance uncovers a novel mechanism underlying platinum-based chemotherapy resistance in gastric cancer that may be utilized for developing effective therapeutic strategies.

Autoři článku: Cortezhovmand9875 (Love McBride)