Corbettaarup8238
285, stage II or III; P=.077). Multicenter external validation did not show a better OS in the adjuvant therapy group (P=.531). On multivariable analysis, only perineural invasion (PNI) was identified as an adverse prognostic factor in resected inv-IPMN (HR 4.844; 95% CI 1.696-13.838, P=.003).
inv-IPMN has a more indolent course than PDAC. Current strategy of adjuvant therapy may not improve the OS in patients with resected inv-IPMN. Further investigations on the potential role of adjuvant therapy in inv-IPMN are mandatory.
inv-IPMN has a more indolent course than PDAC. Current strategy of adjuvant therapy may not improve the OS in patients with resected inv-IPMN. Further investigations on the potential role of adjuvant therapy in inv-IPMN are mandatory.Herein n-, iso- and anteiso-series of very-long-chained (VLC) alkanes (C21 -C35 ), fatty acid benzyl esters (FABEs; C20 -C32 ), and 2-alkanones (C23 -C35 ) were identified in the wax of Primula veris L. and P. acaulis (L.) L. (Primulaceae). For the very first time in a sample of natural origin, the presence of iso- and anteiso-VLC FABEs and 2-alkanones was unequivocally confirmed by synthetic work, derivatization, and NMR. It should be noted that the studied species produced unusually high amounts of branched wax constituents (e. g., >50 % of 2-alkanones were branched isomers). The domination of iso-isomers, probably biosynthesized from leucine-derived starters, is a unique feature in the Plant Kingdom. The plant organ distribution of these VLC compounds in P. acaulis samples (different habitats and phenological phases) pointed to their possible ecological value. This was supported by a eutectic behavior of binary blends of FABEs and alkanes, as well as by high UV-C absorption by FABEs.Metal-catalyzed trans-1,2-hydrosilylations and hydroborations of terminal alkynes that generate synthetically valuable (Z)-alkenylsilanes and (Z)-alkenylboranes remain challenging due to the (E)-selective nature of the reactions and the formation of the thermodynamically unfavorable (Z)-isomer. The development of new, efficient catalytic systems for the (Z)-selective hydrosilylation and hydroboration of terminal alkynes is thus highly desirable from a fundamental perspective as it would deepen our understanding of the metal-catalyzed (Z)-selective hydrosilylation and hydroboration of terminal alkynes. This personal account describes our research for developing a ruthenium complex that can efficiently catalyze the hydrosilylation and hydroboration of terminal alkynes, and for exploring the factors controlling (Z)-selectivity of the reactions. Our effort into the activation of B-protected boronic acids, R-B(dan) (dan=naphthalene-1,8-diaminato), that was believed not to participate in Suzuki-Miyaura cross-coupling, is also discussed.Small dimension Li-ion microbatteries are of great interest for embedded microsystems and on-chip electronics. However, the deposition of fully crystallized cathode thin film generally requires high temperature synthesis or annealing, incompatible with microfabrication processes of integrated Si devices. In this work, a low temperature deposition process of a porous Prussian blue-based cathode on Si wafers is reported. The active material is electrodeposited under aqueous conditions using a pulsed deposition protocol on a porous dendritic metallic current collector that ensures good electronic conductivity of the composite. The high voltage cathodes exhibit a huge areal capacity of ≈650 μAh cm-2 and are able to withstand more than 2000 cycles at 0.25 mA cm-2 rate. The application of these electrode composites with porous Sn based alloying anodes is also demonstrated for the first time in full cell configuration, with high areal energy of 3.1 J cm-2 and more than 95% reversible capacity. This outstanding performance can be attributed to uniform deposition of Prussian blue materials on conductive matrix, which maintains electronic conductivity while simultaneously providing mechanical integrity to the electrode. This finding opens new horizons in the monolithic integration of energy storage components compatible with the semiconductor industry for self-powered microsystems.This review paper discusses the research work published in the last decade on the use of organic compounds and natural products as corrosion inhibitors for steel in CO2 and CO2 /H2 S coexisting environments. The carbon and mild steel samples tested are mostly immersed in CO2 -saturated NaCl/brine solutions or simulated oilfield waters. The influence of temperature, immersion time, CO2 partial pressure, pre-corrosion, flow rate/rotation speed, and the synergistic effect of other compounds on the corrosion inhibition effectiveness of organic compounds and natural products is presented. Primarily, weight loss and electrochemical techniques were used to evaluate the corrosion inhibition effectiveness of these compounds.Protein-ligand interactions are central to protein activity and cell functionality. Improved knowledge of these relationships greatly benefits our understanding of key biological processes and aids in rational drug design towards the treatment of clinically relevant diseases. Carbene footprinting is a recently developed mass spectrometry-based chemical labelling technique that provides valuable information relating to protein-ligand interactions, such as the mapping of binding sites and associated conformational change. Here, we show the application of carbene footprinting to the interaction between eIF4A helicase and a natural product inhibitor, hippuristanol, found in the coral Isis hippuris. Upon addition of hippuristanol we identified reduced carbene labelling (masking) in regions of eIF4A previously implicated in ligand binding. Additionally, we detected hippuristanol-associated increased carbene labelling (unmasking) around the flexible hinge region of eIF4A, indicating ligand-induced conformational change. This work represents further development of the carbene footprinting technique and demonstrates its potential in characterising medicinally relevant protein-ligand interactions.Tissue-engineered skin equivalents are reconstructed the functions of human skin and can be used as an alternative to animal experiments in basic study or as cultured skin for regenerative medicine. Recent studies confirmed that epidermal tight junctions (TJs), which are complex intercellular junctions formed in the stratum granulosum of human skin, play an important part in the formation of the skin barrier function. Selleck Pyrintegrin In well-formed reconstructed human skin models, there are several reports on the expression of TJ proteins and their localization in epidermal layer, however, the morphological features of TJ, showing tight junctional contacts and the process of TJ formation have yet to be investigated. In this study, we systematically examined and identified TJ-related proteins and TJ structure in three-dimensional (3D) human skin equivalents reconstructed by layer-by-layer (LbL) cell coating technique (LbL-3D Skin). We demonstrate localization of TJ-related proteins and time course of formation of TJ structure with typical junctional morphology in LbL-3D Skin. These data provide evidence that the LbL-3D Skin is an in vitro model with structure and function extremely similar to living skin.Transition-metal catalyzed multi-component reactions have captured the attention of researchers in organic synthesis and drug synthesis due to their advantages of simple operation, easy availability of raw materials and without separation of intermediates. Among the multi-component reactions, the three-component processes have been developed into effective organic procedures. This personal account reviews our and other group's studies on the development of three-component coupling reaction for the rapid construction of two new chemical bonds simultaneously via benzylpalladium intermediates. Catalyst-switched three-component reactions of benzyl halides, activated olefins, and allyltributylstannane were successfully conducted to produce the corresponding benzylallylation products. Activation and conversion of carbon monoxide and carbon dioxide via π-benzylpalladium intermediates provide access to a wide range of unsaturated ketones and esters with excellent functional group tolerance. Meanwhile, other methods to produce benzylpalladium intermediates, including Heck insertion of alkenes into arylpalladium complexes, the oxidative addition of benzyl carbonate to palladium complexes and palladium-carbene migratory insertion, were also highlighted.Collagen is an insoluble fibrous protein that composes the extracellular matrix in animals. Although collagen has been used as a biomaterial since 1881, the properties and the complex structure of collagen are still extensive study subjects worldwide. In this article, several topics of importance for understanding collagen research are reviewed starting from its historical milestones, followed by the description of the collagen superfamily and its complex structures, with a focus on type I collagen. Subsequently, some of the superior properties of collagen-based biomaterials, such as biocompatibility, biodegradability, mechanical properties, and cell activities, are pinpointed. These properties make collagen applicable in biomedicine, such as wound healing, tissue engineering, surface coating of medical devices, and skin supplementation. Moreover, some antimicrobial strategies and the general host tissue responses regarding collagen as a biomaterial are presented. Finally, the current status and clinical application of the three-dimensional (3D) printing techniques for the fabrication of collagen-based scaffolds and the reconstruction of the human heart's constituents, such as capillary structures or even the entire organ, are discussed. Besides, an overall outlook for the future of this unique biomaterial is provided.There is always a need for new approaches for the control of virus burdens caused by seasonal outbreaks, the emergence of novel viruses with pandemic potential and the development of resistance to current antiviral drugs. The outbreak of the 2019 novel coronavirus-disease COVID-19 represented a pandemic threat and declared a public health emergency of international concern. Herein, the role of glycans for the development of new drugs or vaccines, as a host-targeted approach, is discussed where may provide a front-line prophylactic or threats to protect against the current and any future respiratory-infecting virus and possibly against other respiratory pathogens. As a prototype, the role of glycans in the coronavirus infection, as well as, galectins (Gal) as the glycan-recognition agents (GRAs) in drug design are here summarized. Galectins, in particular, Gal-1 and Gal-3 are ubiquitous and important to biological systems, whose interactions with viral glycans modulate host immunity and homeostatic balance.At present, cardiovascular disease is one of the important factors of human death, and there are many kinds of proteins involved. Sirtuins family proteins are involved in various physiological and pathological activities of the human body. Among them, there are more and more studies on the relationship between sirtuin2 (SIRT2) protein and cardiovascular diseases. SIRT2 can effectively inhibit pathological cardiac hypertrophy. The effect of SIRT2 on ischaemia-reperfusion injury has different effects under different conditions. SIRT2 can reduce the level of reactive oxygen species (ROS), which may help to reduce the severity of diabetic cardiomyopathy. SIRT2 can affect a variety of cardiovascular diseases, energy metabolism and the ageing of cardiomyocytes, thereby affecting heart failure. SIRT2 also plays an important role in vascular disease. For endothelial cell damage used by oxidative stress, the role of SIRT2 is bidirectional, which is related to the degree of oxidative stress stimulation. When the degree of stimulation is small, SIRT2 plays a protective role, and when the degree of stimulation increases to a certain level, SIRT2 plays a negative role.