Cooneythomsen8909

Z Iurium Wiki

To enable circadian control of gene expression in cyanobacteria, we constructed a genetic logic gate (NAND) using orthogonal promoters via modular CRISPR interference. The NAND gates were tested in Synechococcus elongatus PCC 7942 using a fluorescent reporter. The NAND gate dynamics were characterized based on the affinity of the dCas9 complex to the output element. Upon connecting tight gene repressions with the circadian promoter (the purF gene; peak expression at dawn), inversed peak expressions were obtained as an output of the NAND gate although the retroactivities were shown in the ON and OFF states. A dark-responsive genetic element of the NAND gate was also expanded to an AND gate in S. elongatus PCC 7942. These cyanobacterial NAND and AND gates could facilitate the control of gene expressions in dynamic metabolic engineering technologies, thereby enabling the cyanobacteria to serve as biosolar cell factories.Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a molecular target for the sensitization of cancer cells to the FDA-approved topoisomerase inhibitors topotecan and irinotecan. High-throughput screening of natural product extract and fraction libraries for inhibitors of TDP1 activity resulted in the discovery of a new class of knotted cyclic peptides from the marine sponge Axinella sp. Bioassay-guided fractionation of the source extract resulted in the isolation of the active component which was determined to be an unprecedented 42-residue cysteine-rich peptide named recifin A. The native NMR structure revealed a novel fold comprising a four strand antiparallel β-sheet and two helical turns stabilized by a complex disulfide bond network that creates an embedded ring around one of the strands. The resulting structure, which we have termed the Tyr-lock peptide family, is stabilized by a tyrosine residue locked into three-dimensional space. Recifin A inhibited the cleavage of phosphodiester bonds by TDP1 in a FRET assay with an IC50 of 190 nM. Enzyme kinetics studies revealed that recifin A can specifically modulate the enzymatic activity of full-length TDP1 while not affecting the activity of a truncated catalytic domain of TDP1 lacking the N-terminal regulatory domain (Δ1-147), suggesting an allosteric binding site for recifin A on the regulatory domain of TDP1. Recifin A represents both the first of a unique structural class of knotted disulfide-rich peptides and defines a previously unseen mechanism of TDP1 inhibition that could be productively exploited for potential anticancer applications.In this work, the spatial (in)homogeneity of aqueous processed silicon electrodes using standard poly(acrylic acid)-based binders and slurry preparation conditions is demonstrated. X-ray nanotomography shows segregation of materials into submicron-thick layers depending on the mixing method and starting binder molecular weights. Using a dispersant, or in situ production of dispersant from the cleavage of the binder into smaller molecular weight species, increases the resulting lateral homogeneity while drastically decreasing the vertical homogeneity as a result of sedimentation and separation due to gravitational forces. Conteltinib purchase This data explains some of the variability in the literature with respect to silicon electrode performance and demonstrates two potential ways to improve slurry-based electrode fabrications.Crystal facet engineering provides a promising approach to tailor the performance of catalysts because of the close relationship between the photocatalytic activity and the surface atomic and electronic structures. An in-depth understanding mechanism of crystal facet-dependent CO2 photoreduction is still an open question. Herein, two different types of porous ZnO nanocatalysts are used as model photocatalysts for the investigation, which are, respectively, with exposed 110 and 001 facets. The porous ZnO with an exposed 110 facet exhibits superior photocatalytic activity to the one with the 001 facet. Various influencing factors have been thoroughly studied both theoretically and/or experimentally, including light harvesting (i.e., band gap), reduction capability (potential of conduction band), crystallinity, CO2 adsorption ability, CO2 activation, and charge separation. The major influencing factors are eventually figured out based on the experimental and calculation results. The product selectivity and the influence of the hole scavenger can be explained too. Our work may pave a way for directing the future rational design of efficient photocatalysts for CO2 reduction.The nucleosome is the basic packing unit of the eukaryotic genome. Dynamic interactions between DNA and histones in the nucleosome are the molecular basis of gene accessibility regulation that governs the kinetics of various DNA-templated processes such as transcription elongation by RNA Polymerase II (Pol II). On the basis of single-molecule FRET measurements with chemically modified histones, we investigated the nucleosome dynamics during transcription elongation and how it is affected by histone acetylation at H3 K56 and the histone chaperone Nap1, both of which can affect DNA-histone interactions. We observed that H3K56 acetylation dramatically shortens the pause duration of Pol II near the entry region of the nucleosome, while Nap1 induces no noticeable difference. We also found that the elongation rate of Pol II through the nucleosome is unaffected by the acetylation or Nap1. These results indicate that H3K56 acetylation facilitates Pol II translocation through the nucleosome by assisting paused Pol II to resume and that Nap1 does not affect Pol II progression. Following transcription, only a small fraction of nucleosomes remain intact, which is unaffected by H3K56 acetylation or Nap1. These results suggest that (i) spontaneous nucleosome opening enables Pol II progression, (ii) Pol II mediates nucleosome reassembly very inefficiently, and (iii) Nap1 in the absence of other factors does not promote nucleosome disassembly or reassembly during transcription.Hydroxyapatite (HA) coatings directly deposited by hydrothermal electrochemical technology (HET) onto carbon/carbon (C/C) composites exhibited a catastrophic failure occurring at the interface of the HA and C/C. To overcome this problem, a polyvinyl alcohol (PVA)/graphene oxide (GO) interlayer (P/G interlayer) was applied on the (NH4)2S2O8-pretreated C/C substrate (named P/G-C/C) by using a dipping method. Subsequently, a calcium phosphate coating was deposited on P/G-C/C, shortened as M-P/G-C/C, by HET, and then converted into HA coating (abbreviated as HA-P/G-C/C) through posthydrothermal treatment. For comparison, HA coating was prepared onto C/C without a P/G interlayer through the same process, which was denoted as HA-C/C. The composition, microstructure, and morphology of the samples were characterized by X-ray diffractometry (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), Raman spectra, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The aactivity, inducing the growth of bonelike apatite than the HA coating.Endothelin-1 (ET-1) is a powerful endogenous vasoconstrictor and it is closely related to the pathogenesis of endothelial dysfunction that is commonly involved in the initiation of vascular inflammation and in the development of vascular diseases. A new method for the electrochemical immunoassay of ET-1 was put forward in this work. ET-1 antibodies (Ab), gold nanoparticles (GNPs), and copper ions were employed to synthesize nanoenzyme-labeled antibodies, Ab-GNPs-Cu(II) nanocomposites, and the latter was evaluated using transmission electron microscopy, dynamic light scattering, UV-vis absorption spectrophotometry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. These nanocomposites could be captured on a glassy carbon electrode (GCE) modified with poly(thionine) (PTH) and ET-1, GCE/PTH/ET-1. The immobilized nanoenzymes, GNPs-Cu(II) nanoparticles, played a peroxidase mimic role. Hydroxyl radicals, •OH, generated by a Fenton-type reaction, oxidized PTH and induced the considerable cathodic current on an assembled sandwich-type electrode. Owing to the competitive immunoreaction, ET-1 in the solution inhibited the capture of Ab-GNPs-Cu(II) nanocomposites. The deficiency of •OH caused the decline of the electrochemical response. The cathodic current change was in proportion to the ET-1 concentration from 0.5 to 500 ng mL-1. Cell morphology and viability investigations show that human umbilical vein endothelial cells, HUVECs, suffered from dysfunction when they were incubated in the presence of high-concentration glucose. Analyses on the growth medium using the developed method reveal that ET-1 was secreted by the injured cells and the release level of ET-1 was associated positively with the glucose concentration in the growth medium.Hydrogels with attractive stimuli-responsive volume changing abilities are seeing emerging applications as soft actuators and robots. However, many hydrogels are intrinsically soft and fragile for tolerating mechanical damage in real world applications and could not deliver high actuation force because of the mechanical weakness of the porous polymer network. Conventional tough hydrogels, fabricated by forming double networks, dual cross-linking, and compositing, could not satisfy both high toughness and high stimuli responsiveness. Herein, we present a material design of combining responsive and tough components in a single hydrogel network, which enables the synergistic realization of high toughness and actuation performance. We showcased this material design in an exemplary tough and thermally responsive hydrogel based on PVA/(PVA-MA)-g-PNIPAM, which achieved 100 times higher toughness (∼10 MJ/m3) and 20 times higher actuation stress (∼10 kPa) compared to conventional PNIPAM hydrogels, and a contraction ratio of up to 50% simultaneously. The effects of salt concentration, polymer ratio, and structural design on the mechanical and actuation properties have been systematically investigated. Utilizing 4D printing, actuators of various geometries were fabricated, as well as lattice-architected hydrogels with macro-voids, presenting 4 times faster actuation speed compared to bulk hydrogel, in addition to the high toughness, actuation force, and contraction ratio.Aiming at the global water scarcity, solar-driven desalination based on photothermal materials is identified as a promising strategy for freshwater production because of sustainability, spontaneity, and flexibility. Water transfer in photothermal materials, especially ones with 3D morphologies, can adjust the evaporation efficiency as a critical factor. In this work, a rationally designed roll morphology has been introduced into photothermal to advance the water transfer evaporation via controllable capillary action. The vertical intervals of the roll, similar to slit pore, can pump the water up to the entire materials to not only keep a stable vapor generation rate but reject salt precipitation. Additionally, the roll morphology also improves the light-harvesting via both the high roughness surface and confinement absorption inside the intervals. With excellent water transfer and energy management, photothermal roll showed an evaporation rate up to 1.93 ± 0.05 kg m-2 h-1, which was over 44% higher than the flat sample in the same constituents.

Autoři článku: Cooneythomsen8909 (Mead Funch)