Cookemoran2468
In this work, we tested if inoculation with the plant growth-promoting rhizobacteria Azospirillum brasilense strain Az39 alleviates Cd2+ stress in wheat seedlings grown under controlled conditions. Growth, total N, N-related metabolites/enzymes, and oxidative stress parameters were measured. Additionally, the usefulness of a real-time PCR protocol to screen the preferred colonization site of the introduced microorganism was evaluated. Inoculated plants demonstrated mitigation of cadmium-induced adverse effects on plant growth and less reactive oxygen species accumulation in their roots by the end of the experiment, 28 days after sowing. Cd addition resulted in lower NO3- content in the leaves and higher NO3- content in the roots, and a significant rise in NH4+ concentration in both organs in uninoculated plants; in inoculated plants, NH4+ content in the roots did not vary. A. brasilense Az39 enhanced NO levels in wheat root tips, and more adventitious roots and root hairs were observed in inoculated plants. Despite having a more developed root system, inoculated plants showed lower Cd levels in their roots compared to non-inoculated plants. Inoculation with this PGPR favored ion homeostasis in the roots of metal-exposed plants, decreasing Cd/Fe ratio. We corroborated A. brasilense Az39 preference for wheat exorhizosphere using a real-time PCR-based method targeting the nifA gene.High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). In angiosperms, cyclic electron flow (CEF) around PSI is thought to be the main player protecting PSI under FL. The activation of CEF is linked to the thylakoid stacking, which is in turn affected by light intensity. However, it is unknown how pre-illumination affects the CEF activation and PSI redox state under FL. To address this question, we conducted a spectroscopic analysis under FL in Bletilla striata and Morus alba after pre-illumination at moderate light (ML, 611 μmol photons m-2 s-1) or high light (HL, 1455 μmol photons m-2 s-1). Our results indicated that both species displayed a transient over-reduction of PSI after a transition from low to high light, but the extent of PSI over-reduction under FL was largely alleviated by pre-illumination at HL when compared with pre-illumination under ML. Furthermore, pre-illumination at HL accelerated the activation rate of CEF but did not affect the activation of non-photochemical quenching and linear electron flow from photosystem II under FL. Therefore, such increased CEF activity by pre-illumination under HL alleviated PSI over-reduction under FL by facilitating the electron sink downstream of PSI. Taking together, pre-illumination at HL protects PSI under FL through acceptor-side regulation.Drought occurrence seriously affects the productivity and quality of apple crop worldwide. Autophagy, a conserved process for the degradation and recycling of unwanted cellular components, is considered to positively regulate the tolerance of various abiotic stresses in plants. In the current study, we isolated two ATG5 homologs genes, namely, MdATG5a and MdATG5b, from apple, demonstrating their responsiveness to drought and oxidative stresses. In addition to having the same cellular localization in the nucleus and cytoplasm, both MdATG5a and MdATG5b could interact with MdATG12. Transgenic apple plants overexpressing MdATG5a exhibited an improved drought tolerance, as indicated by less drought-related damage and higher photosynthetic capacities compared to wild-type (WT) plants under drought stress. The overexpression of MdATG5a improved antioxidant defenses in apple when exposed to drought via elevating both antioxidant enzyme activities and the levels of beneficial antioxidants. Furthermore, under drought stress, the overexpression of MdATG5a promoted the mobilization of starch to accumulate greater levels of soluble sugars, contributing to osmotic adjustments and supporting carbon skeletons for proline synthesis. Such changes in physiological responses may be associated with increased autophagic activities in the transgenic plants upon exposure to drought. Our results demonstrate that MdATG5a-mediated autophagy enhances drought tolerance of apple plants via improving antioxidant defenses and metabolic adjustments.The low level of cysteine-rich proteins (lcrp) mutation indicates a decrease in cysteine-rich (CysR) prolamines, α-globulin, and glutelin. To identify the causing factor of lcrp mutation, to elucidate its function, and to elucidate the role of CysR proteins in the formation of protein bodies (PBs), lcrp mutant was analyzed. A linkage map of the LCRP gene was constructed and genomic DNA sequencing of a predicted gene within the mapped region demonstrated that LCRP encodes a serine hydroxymethyltransferase, which participates in glycine-serine interconversion of one-carbon metabolism in the sulfur assimilation pathway. The levels of l-Ser, Gly, and Met in the sulfur assimilation pathway in the lcrp seeds increased significantly compared to that in the wildtype (WT). As the lcrp mutation influences the growth of shoot and root, the effects of the addition to the medium of amino acids and other compounds on the sulfur assimilation pathway were studied. Electron-lucent PBs surrounded by ribosome-attached membranes were observed accumulating cysteine-poor prolamines in the lcrp seeds. Additionally, glutelin-containing PBs were smaller and distorted in the lcrp seeds compared to those in the WT. These analyses of PBs in the lcrp seeds suggest that cysteine-rich proteins play an important role in the formation of PBs in rice.Commercial avocado orchards typically consist of composite trees. Avocado is salt-sensitive, suffering from substantial growth and production depreciation when exposed to high sodium and chloride levels. Salt ions penetrate the roots and are subsequently transferred to the foliage. Hence, understanding distinct physiological responses of grafted avocado plant organs to salinity is of great interest. We compared the ion, metabolite and lipid profiles of leaves, roots and trunk drillings of mature 'Hass' scion grafted onto two different rootstocks during gradual exposure to salinity. We found that one rootstock, VC840, did not restrict the transport of irrigation solution components to the scion, leading to salt accumulation in the trunk and leaves. The other rootstock, VC152, functioned selectively, moderating the movement of toxic ions to the scion organs by accumulating them in the roots. The leaves of the scion grafted on the selective rootstock acquired the standard level of essential minerals without being exposed to excessive salt concentrations. However, this came with an energetic cost as the leaves transferred carbohydrates and storage lipids downward to the rootstock organs, which became a strong sink. We conclude that mutual scion-rootstock relationships enable marked tolerance to salt stress through selective ion transport and metabolic modifications.Barren stalks and kernel abortion are the major obstacles that hinder maize production. After many years of inbreeding, our group produced a pair of barren stalk/non-barren stalk near-isogenic lines SN98A/SN98B. Under weak light stress, the barren stalk rate is up to 98 % in SN98A but zero in SN98B. Therefore, we consider that SN98A is a weak light-sensitive inbred line whereas SN98B is insensitive. In the present study, the near-isogenic lines SN98A/SN98B were used as test materials to conduct cytological and photosynthetic physiological analyses of the physiological mechanism associated with the differences in maize barren stalk induced by weak light stress. The results showed that weak light stress increased the accumulation of reactive oxygen species (ROS), decreased the function of chloroplasts, destroyed the normal rosette structure, inhibited photosynthetic electron transport, and enhanced lipid peroxidation. The actual photochemical quantum efficiency for PSI (Y(I)) and PSII (Y(II)), relative electron transfer rate for PSI (ETR(I)) and PSII (ETR(II)), and the P700 activities decreased significantly in the leaves of SN98A and SN98B under weak light stress, where the decreases were greater in SN98A than SN98B. After 10 days of shading treatment, the O2·- production rate, H2O2 contents, the yield of regulated energy dissipation (Y(NPQ)), the donor side restriction for PSI (Y(ND)) and the quantum efficiency of cyclic electron flow photochemistry were always higher in SN98A than SN98B, and the antioxidant enzyme activities were always lower in SN98A than those in SN98B. see more These results show that SN98B has a stronger ability to remove ROS at its source, and maintain the integrity of the structure and function of the photosynthetic system. This self-protection mechanism is an important physiological reason for its adaptation to weak light.The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.