Conwaypetersson7532

Z Iurium Wiki

2% of the microcapsules could travel through gastric juice, and 75.2% could be released in the intestinal region. These results suggested that microcapsules prepared by KGM-SPI might be used as a carrier for the controlled release of GLO and could microencapsulate various oil-soluble nutrients in food products.Helicobacter pylori (H. pylori) is a bacterium that can cause a variety of gastric diseases. Most bacteriocins have gained popularity due to their non-toxic effects on cells and antibacterial effects against a wide range of pathogenic bacteria. In this study, the chemical synthesis of the bipeptide bacteriocin PLNC8 was used to investigate its possible action mechanism against H. pylori ZJC03 in vitro. Results showed that PLNC8 had significant anti-H. pylori ZJC03 potential, which resulted in a significant reduction in urease activity and a minimum inhibitory concentration (MIC) of 80 μM. PLNC8 inhibited the growth of H. pylori ZJC03, disrupting its structure as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, PLNC8 decreased the ATP level and hydrogen peroxide sensitivity of H. pylori ZJC03. In conclusion, PLNC8 disrupts the ability of H. pylori ZJC03 to alter the host environment, providing a new avenue for the prevention and control of H. pylori infection, providing a theoretical foundation for further elucidation of its regulatory mechanism.High pressure processing (HPP) can be applied as an alternative thermal treatment of milk to maintain its natural and original sensory quality. Milk was processed at 600 MPa for 10 min or given thermal treatment at 125 °C for 4 s. Sensory evaluation of treated milk samples was conducted using the triangle and the acceptance and preference tests. The triangle test was used as a discriminative test to check whether there was a noticeable difference between both treated milk samples. The acceptance and preference test determined attributes of milk including colour, milkiness, creaminess, mouthfeel, and aftertaste based on the 5-point just-about-right (JAR) scale. In the triangle test, 89.5% of panellists were able to identify the odd sample and differentiate milk processed using high pressure from heat treatment. For the acceptance and preference test, 61% of panellists gave higher overall preference for the high pressure processed milk over heat-treated milk. The JAR evaluation showed no significant differences (p > 0.05) in all evaluated milk attributes which included milkiness, creaminess, mouthfeel, and aftertaste, with the exception of colour. Overall, high pressure processed milk scored better in terms of organoleptic properties as the penalty value for most attributes including colour, milkiness, mouthfeel, and aftertaste were lower than the penalty of heat-treated milk, except for creaminess. Therefore, to improve the acceptance and preference of high pressure processed milk, future development needs to focus on increasing creaminess of high pressure processed milk.The enhanced β-glucosidase activity of encapsulated Lactiplantibacillus plantarum BCRC 10357 within calcium alginate capsules was investigated by ultrasonic stimulation to induce the stress response of the bacteria for the biotransformation of isoflavones in black soymilk. The effects of various ultrasound durations, sodium alginate concentrations (% ALG), and cell suspensions on the β-glucosidase activity of encapsulated bacteria were explored. The β-glucosidase activity of encapsulated L. plantarum BCRC 10357 with ultrasonic stimulation (40 kHz/300 W) was greater than that without ultrasound. With 20 min of ultrasonic treatment, the β-glucosidase activity of encapsulated L. plantarum BCRC 10357 from 2% ALG/0.85% NaCl cell suspension was 11.47 U/mL at 12 h, then increased to 27.43 U/mL at 36 h and to 26.25 U/mL at 48 h in black soymilk at 37 °C, showing the high adaptation of encapsulated L. plantarum BCRC 10357 encountering ultrasonic stress to release high β-glucosidase until 48 h, at which point the ratio of isoflavone aglycones (daidzein and genistein) in total isoflavones (daidzin, genistin, daidzein, and genistein) was 98.65%, reflecting the effective biotransformation of isoflavone glycosides into aglycones by β-glucosidase. In this study, the survivability and β-glucosidase activity of encapsulated L. plantarum BCRC 10357 were enhanced under ultrasonic stimulation, and were favorably used in the fermentation of black soymilk.Obesity is a disease characterized by an inflammatory process in the adipose tissue due to diverse infiltrated immune cells, an increased secretion of proinflammatory molecules, and a decreased secretion of anti-inflammatory molecules. On the other hand, obesity increases the risk of several diseases, such as cardiovascular diseases, diabetes, and cancer. Selleck MS1943 Their treatment is based on nutritional and pharmacological strategies. However, natural products are currently implemented as complementary and alternative medicine (CAM). Polyphenols and fiber are naturally compounds with potential action to reduce inflammation through several pathways and play an important role in the prevention and treatment of obesity, as well as in other non-communicable diseases. Hence, this review focuses on the recent evidence of the molecular mechanisms of polyphenols and dietary fiber, from Scopus, Science Direct, and PubMed, among others, by using key words and based on recent in vitro and in vivo studies.Lactic acid bacteria are very important in winemaking. In this study, 108 lactic acid bacteria isolates were obtained from high-ethanol-content (~17% (v/v)) Grenache wines during uninoculated malolactic fermentation (MLF). The 16S rRNA and species-specific PCR showed that 104 of these were Oenococcusoeni, three were Lactobacillus hilgardii, and one was Staphylococcus pasteuri. AFLP of HindIII and MseI digests of the genomic DNA of the O. oeni strains was developed for the first time to discriminate the strains. The results showed that the method was a suitable technique for discriminating the O. oeni strains. Based on the cluster analysis, nine O. oeni strains were chosen for inclusion in an ethanol tolerance assay involving monitoring of optical density (ABS600nm) and viable plating. Several O. oeni strains (G63, G46, G71, G39) survived and grew well in MRS-AJ with 17% (v/v) ethanol, while the commercial O. oeni reference strain did not. Strain G63 could also survive and grow for 168 h after inoculation in MRS-AJ medium with 19% (v/v) ethanol. These results suggest that O. oeni G63, G46, G71, and G39 could potentially be used as MLF starters for high-ethanol-content wines. All three L. hilgardii strains could survive and grow in MRS-AJ with 19% (v/v) ethanol, perhaps also indicating their suitability as next-generation MLF starter cultures.As a local medicine and food, wampee fruit, with abundant bioactive compounds, is loved by local residents in Southern China. Titratable acid (TA), total sugar (TS), and total phenolic and flavonoid contents were detected, and phytochemical profiles and cellular antioxidant activities were analyzed by the HPLC and CAA (cellular antioxidant activity) assay in five sweet wampee varieties and five sour wampee varieties. Results showed that the average TS/TA ratio of sweet wampee varieties was 29 times higher than sour wampee varieties, while TA content was 19 times lower than sour wampee varieties. There were much lower levels of total phenolics, flavonoids, and antioxidant activities in sweet wampee varieties than those in sour wampee varieties. Eight phytochemicals were detected in sour wampee varieties, including syringin, rutin, benzoic acid, 2-methoxycinnamic acid, kaempferol, hesperetin, nobiletin, and tangeretin, while just four of them were detected in sweet wampee varieties. Syringin was the only one that was detected in all the sour wampee varieties and was not detected in all sweet wampee varieties. Correlation analysis showed significant positive correlations between TA with phenolics, flavonoids, and total and cellular (PBS wash) antioxidant activities, while there were significant negative correlations between TS/TA with phenolic and cellular (no PBS wash) antioxidant activities. This suggested that the content of titratable acid in wampee fruit might have some relationship with the contents of phenolics and flavonoids. Sour wampee varieties should be paid much attention by breeders for their high phytochemical contents and antioxidant activities for cultivating germplasms with high health care efficacy.Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon is not clear. The current studies have been aimed at exploring the effect of a strain on the secretion of IgA in the host's intestine, but the mechanism behind it has not been seriously studied. Based on this, we selected five strains of Lactobacillus fermentum isolated from different individuals to determine whether there are intraspecific differences in stimulating the secretion of IgA from the intestinal mucosa. It was found that IgA concentrations in different intestinal segments and faeces induced by L. fermentum were different. 12-1 and X6L1 strains increased the secretion of IgA by the intestine significantly. In addition, different strains of L. fermentum were also proven to have different effects on the host gut microbiota but no significant effects on IgA-coated microbiota. Besides, it was speculated that different strains of L. fermentum may act on different pathways to stimulate IgA in a non-inflammatory manner. By explaining the differences of IgA secretion in the host's intestine tract stimulated by different strains of L. fermentum, it is expected to provide a theoretical basis for the stimulation of intestinal secretion of IgA by Lactobacillus and a new direction for exploring the relationship between Lactobacillus and human immunity.Changes in key odorants of shaken black tea (SBT) during its manufacture were determined using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) and multivariate data analysis. A total of 241 volatiles was identified, comprising 49 aldehydes, 40 esters, 29 alcohols, 34 ketones, 30 aromatics, 24 alkenes, 17 alkanes, 13 furans, and 5 other compounds. A total of 27 volatiles had average relative odor activity values (rOAVs) greater than 1, among which (E)-β-ionone, (E,Z)-2,6-nonadienal, and 1-octen-3-one exhibited the highest values. According to the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2FC| > 1, 61 discriminatory volatile compounds were screened out, of which 26 substances were shared in the shaking stage (FL vs. S1, S1 vs. S2, S2 vs. S3). The results of the orthogonal partial least squares discriminate analysis (OPLS-DA) differentiated the influence of shaking, fermentation, and drying processes on the formation of volatile compounds in SBT. In particular, (Z)-3-hexenol, (Z)-hexanoic acid, 3-hexenyl ester, (E)-β-farnesene, and indole mainly formed in the shaking stage, which promoted the formation of the floral and fruity flavor of black tea. This study enriches the basic theory of black tea flavor quality and provide the theoretical basis for the further development of aroma quality control.

Autoři článku: Conwaypetersson7532 (Serup Kastrup)