Conradmckee2482

Z Iurium Wiki

Hypoxic-ischemic (HI) brain injury is a leading cause of acute mortality and chronic disability in newborns. AS601245 Current evidence shows that cerebral microvascular response and compromised blood-brain barrier (BBB) integrity occur rapidly and could primarily be responsible for the brain injury observed in many infants with HI brain injury. MicroRNAs (miRNAs) are a type of highly conserved non-coding RNAs (ncRNAs), which consist of 21-25 nucleotides in length and usually lead to suppression of target gene expression. Growing evidence has revealed that brain-enriched miRNAs act as versatile regulators of BBB dysfunctions in various neurological disorders including neonatal HI brain injury. In the present review, we summarize the current findings regarding the role of miRNAs in BBB impairment after hypoxia/ischemia brain injury. Specifically, we focus on the recent progress of miRNAs in the pathologies of neonatal HI brain injury. These findings can not only deepen our understanding of the role of miRNAs in BBB impairment in HI brain injury, but also provide insight into the development of new therapeutic strategies for preservation of BBB integrity under pathological conditions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors the tropomyosin-related kinase A (TrkA), and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual's work, medical, legal, educational and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals when exposed to prenatal, chronic alcohol consumption and also on binge drinking. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.Reactive nitrogen species (RNS) and reactive oxygen species (ROS) collectively known as reactive oxygen and nitrogen species (RONS) are the products of normal cellular metabolism and interact with several vital biomolecules including nucleic acid, proteins, and membrane lipids and alter their function in an irreversible manner which can lead finally to cell death. There is an imperative role for oxidative stress in the pathogenesis of cognitive impairments and the development and progression of neural injury. Elevated production of higher amounts of nitric oxide (NO) takes place in numerous pathological conditions such as neurodegenerative diseases, inflammation, and ischemia which occur concurrently with elevated nitrosative/oxidative stress. The enzyme nitric oxide synthase (NOS) is responsible for the generation of NO in different cells by conversion of L-arginine (Arg) to L-citrulline. Therefore, the NO signaling pathway represents a viable therapeutic target. Naturally occurring polyphenols targeting the NO signaling pathway can be of major importance in the field of neurodegeneration and related complications. Here we comprehensively review the importance of NO and its production in the human body and afterwards highlight the importance of various natural products along with their mechanisms against various neurodegenerative diseases involving their effect on NO production. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3 - 9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed.

Autoři článku: Conradmckee2482 (Fitzpatrick Lentz)