Connorrice9043

Z Iurium Wiki

Variations in gut microbiota can be explained by animal host characteristics, including host phylogeny and diet. However, there are currently no databases that allow for easy exploration of the relationship between gut microbiota and diverse animal hosts. The Animal Microbiome Database (AMDB) is the first database to provide taxonomic profiles of the gut microbiota in various animal species. AMDB contains 2530 amplicon data from 34 projects with manually curated metadata. The total data represent 467 animal species and contain 10 478 bacterial taxa. This novel database provides information regarding gut microbiota structures and the distribution of gut bacteria in animals, with an easy-to-use interface. Interactive visualizations are also available, enabling effective investigation of the relationship between the gut microbiota and animal hosts. AMDB will contribute to a better understanding of the gut microbiota of animals. AMDB is publicly available without login requirements at http//leb.snu.ac.kr/amdb.

Transposition of the great arteries with ventricular septal defect (VSD) and left ventricular outflow tract obstruction (LVOTO) is a rare malformation. JNKIN8 Our objective was to report on management and results of the cohort with non-committed VSD from a national registry for congenital heart disease.

Multicentre data were screened in the German National Registry for Congenital Heart Defects (Berlin, Germany) for repairs of transposition of the great arteries-VSD-LVOTO. A subgroup of patients with a remote/non-committed VSD was identified. End points included survival, reoperation and a composite of reoperations for LVOTO-/VSD- or baffle-related problem.

N = 47 patients were identified treated in 14 different national centres between 1984 and 2020. The mean age was 14 (standard deviation 9) months, ranging from 7 days to 9.5 years. Nine patients (19%) were treated as neonates, 21 (45%) as infants and 17 children (36%) beyond the age of 1 year. Survival was >90% (80-100%) at 20 years. Freedom from any reopy delayed to beyond 1 year of age.Network medicine has proven useful for dissecting genetic organization of complex human diseases. We have previously published HumanNet, an integrated network of human genes for disease studies. Since the release of the last version of HumanNet, many large-scale protein-protein interaction datasets have accumulated in public depositories. Additionally, the numbers of research papers and functional annotations for gene-phenotype associations have increased significantly. Therefore, updating HumanNet is a timely task for further improvement of network-based research into diseases. Here, we present HumanNet v3 (https//www.inetbio.org/humannet/, covering 99.8% of human protein coding genes) constructed by means of the expanded data with improved network inference algorithms. HumanNet v3 supports a three-tier model HumanNet-PI (a protein-protein physical interaction network), HumanNet-FN (a functional gene network), and HumanNet-XC (a functional network extended by co-citation). Users can select a suitable tier of HumanNet for their study purpose. We showed that on disease gene predictions, HumanNet v3 outperforms both the previous HumanNet version and other integrated human gene networks. Furthermore, we demonstrated that HumanNet provides a feasible approach for selecting host genes likely to be associated with COVID-19.RNA polymerase III (Pol III) transcribes hundreds of non-coding RNA genes (ncRNAs), which involve in a variety of cellular processes. However, the expression, functions, regulatory networks and evolution of these Pol III-transcribed ncRNAs are still largely unknown. In this study, we developed a novel resource, Pol3Base (http//rna.sysu.edu.cn/pol3base/), to decode the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. The current release of Pol3Base includes thousands of regulatory relationships between ∼79 000 ncRNAs and transcription factors by mining 56 ChIP-seq datasets. By integrating CLIP-seq datasets, we deciphered the interactions of these ncRNAs with >240 RNA binding proteins. Moreover, Pol3Base contains ∼9700 RNA modifications located within thousands of Pol III-transcribed ncRNAs. Importantly, we characterized expression profiles of ncRNAs in >70 tissues and 28 different tumor types. In addition, by comparing these ncRNAs from human and mouse, we revealed about 4000 evolutionary conserved ncRNAs. We also identified ∼11 403 tRNA-derived small RNAs (tsRNAs) in 32 different tumor types. Finally, by analyzing somatic mutation data, we investigated the mutation map of these ncRNAs to help uncover their potential roles in diverse diseases. This resource will help expand our understanding of potential functions and regulatory networks of Pol III-transcribed ncRNAs.We report an update of the Hymenoptera Genome Database (HGD; http//HymenopteraGenome.org), a genomic database of hymenopteran insect species. The number of species represented in HGD has nearly tripled, with fifty-eight hymenopteran species, including twenty bees, twenty-three ants, eleven wasps and four sawflies. With a reorganized website, HGD continues to provide the HymenopteraMine genomic data mining warehouse and JBrowse/Apollo genome browsers integrated with BLAST. We have computed Gene Ontology (GO) annotations for all species, greatly enhancing the GO annotation data gathered from UniProt with more than a ten-fold increase in the number of GO-annotated genes. We have also generated orthology datasets that encompass all HGD species and provide orthologue clusters for fourteen taxonomic groups. The new GO annotation and orthology data are available for searching in HymenopteraMine, and as bulk file downloads.

The msr(E)-mph(E) operon exists widely in diverse species of bacteria and msr(E) and mph(E) genes confer high resistance to macrolides. We aimed to explore whether macrolides regulate the transcription of the operon.

Antibiotic resistance genes in clinical isolates of Klebsiella pneumoniae were analysed by WGS. The transcription of the msr(E)-mph(E) operon was investigated by quantitative PCR. Construction of enhanced green fluorescent protein (eGFP) reporter plasmids, gene knockout and complementation experiments were used to further explore the induction mechanism of macrolides for the operon. Sequence analysis was finally used to investigate whether the operon exists widely in diverse species of bacteria.

We originally found that the treatment of a pandrug-resistant isolate of K. pneumoniae (KP1517) with macrolides obviously up-regulated the msr(E)-mph(E) operon, which was further confirmed in another nine clinical isolates of K. pneumoniae. The induction mechanism of macrolides for the operon was partly elucidated. Macrolides could activate the operon promoter, and the J10/J35 regions (J10 5'-AGTTATCAT-3'; J35 5'-TTGTCT-3') of the promoter were determined. Histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP) were involved in the erythromycin-mediated activation of the operon promoter. The 476 strains of bacteria carrying the msr(E)-mph(E) operon currently in the NCBI database are mainly Acinetobacter baumannii (158; 33%), K. pneumoniae (95; 20%), Escherichia coli (26; 5%) and Proteus mirabilis (25; 5%). They were mainly isolated from human clinical samples (287; 60%) and had a wide geographical distribution.

Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria.

Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria.

Bacterial antibiotic tolerance is responsible for the recalcitrance of chronic infections. This study aims to investigate a potential drug that can effectively kill antibiotic-tolerant bacteria and evaluate the ability of this drug on the eradication of tolerant cells both in vitro and in vivo.

The in vitro effect of econazole on eradicating starvation-induced tolerant bacterial populations was studied by testing the amount of survival bacteria in the presence of econazole combining conventional antibiotics. Proton motive force (PMF) was determined after econazole treatment by DiOC2(3). Finally, mouse infection models were used to detect the ability of econazole on killing the tolerant populations in vivo.

Econazole eradicated starvation-induced tolerant cells of various bacterial species within 24 or 96 h when used in combination with conventional antibiotics. Moreover, mouse survival rate drastically increased along with the decrease of in vivo bacterial count after treatment of infected mice with theMF disruption is a feasible strategy for the treatment of chronic and recurrent bacterial infections.

The ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone was first discovered in Japan in 2015.

We investigated the possibility of horizontal gene transfer from Neisseria subflava harbouring the mosaic-like PBP-2 in the emergence of the FC428 clone. We also analysed whether there were fitness costs associated with the sustained international dissemination of the clone.

Sequencing of the penA gene in ceftriaxone-resistant N. subflava strains was performed. For transformation experiments between donor N. subflava and ciprofloxacin-resistant wild-type penA N. gonorrhoeae recipient, the full-length PCR amplification product of the penA gene, including DUS regions, was used as the donor DNA. Biological fitness of the transformants was measured by growth competition assays. The impact of QRDR and mtrR mutations, which have been reported as compensatory mutations, on fitness was also assessed.

The penA mosaic allele of the FC428 clone showed 100%, 91.8%, and 89.8% homology, respectively, with penA genes of three ceftriaxone-resistant N. subflava strains, No. 30, No. 9 and No. 14. Results were consistent with homologous recombination with the donated penA mosaic allele. In co-cultures with the parent strain, transformants showed comparable growth indicating that a gyrA mutation compensates for the fitness cost of mosaic penA alleles.

Our findings support the hypothesis that the FC428 clone was generated by transformation of the mosaic penA allele from oropharyngeal N. subflava to N. gonorrhoeae. Furthermore, it suggests that mutations in the gyrA QRDR region compensate for fitness costs and contribute to the continued transmission of the FC428 clone.

Our findings support the hypothesis that the FC428 clone was generated by transformation of the mosaic penA allele from oropharyngeal N. subflava to N. gonorrhoeae. Furthermore, it suggests that mutations in the gyrA QRDR region compensate for fitness costs and contribute to the continued transmission of the FC428 clone.

Coronary artery disease is becoming a major health concern in the young population. Male and female patients may experience different journeys after coronary artery disease events. We aimed to evaluate risk factors and compare outcomes between young male and female patients undergoing coronary artery bypass graft surgery (CABG).

In this registry-based large sample size study, patients undergoing isolated CABG at a young age (premature isolated CABG) between 2007 and 2016 were included and followed up until 2020. Premature was defined as women and men younger than 55 years old. The main end points of the study were 7-year all-cause mortality and 7-year major adverse cardiovascular and cerebrovascular events (MACCEs).

Of a total of 24 428 patients who underwent CABG, 7217 patients (men-to-women ratio ≈41) with premature isolated CABG were included. The median follow-up duration was 78.5 months (75.2-81.6 months). The prevalence rates of diabetes mellitus, hypertension, dyslipidaemia and obesity were significantly higher in women than in men (58.

Autoři článku: Connorrice9043 (Holck Ashworth)