Conleyborregaard6773
AML is a genetically heterogeneous disease and understanding how different co-occurring mutations cooperate to drive leukemogenesis will be crucial for improving diagnostic and therapeutic options for patients. MIR142 mutations have been recurrently detected in IDH-mutated AML samples. Here, we have used a mouse model to investigate the interaction between these two mutations and demonstrate a striking synergy between Mir142 loss-of-function and IDH2R140Q, with only recipients of double mutant cells succumbing to leukemia. Transcriptomic analysis of the non-leukemic single and leukemic double mutant progenitors, isolated from these mice, suggested a novel mechanism of cooperation whereby Mir142 loss-of-function counteracts aberrant silencing of Hoxa cluster genes by IDH2R140Q. Our analysis suggests that IDH2R140Q is an incoherent oncogene, with both positive and negative impacts on leukemogenesis, which requires the action of cooperating mutations to alleviate repression of Hoxa genes in order to advance to leukemia. This model, therefore, provides a compelling rationale for understanding how different mutations cooperate to drive leukemogenesis and the context-dependent effects of oncogenic mutations.Preclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models. Technological innovations have enabled major improvements in the capacity of these tumour models to reproduce the clinical complexity of urological cancers. Each type of patient-derived model has inherent advantages and limitations that can be exploited, either alone or in combination, to gather specific knowledge on clinical challenges and address unmet clinical needs. Nevertheless, few opportunities exist for patients with urological cancers to benefit from personalized therapeutic approaches. Clinical validation of experimental data is needed to facilitate the translation and implementation of preclinical knowledge into treatment decision making.High-risk prostate cancer is a heterogeneous disease that lacks clear consensus on its ideal management. Historically, non-surgical treatment was the preferred strategy, and several studies demonstrated improved survival among men with high-risk disease managed with the combination of radiotherapy and androgen deprivation therapy (ADT) compared with ADT alone. However, practice trends in the past 10-15 years have shown increased use of radical prostatectomy with pelvic lymph node dissection for primary management of high-risk, localized disease. Radical prostatectomy, as a primary monotherapy, offers the potential benefits of avoiding ADT, reducing rates of symptomatic local recurrence, enabling full pathological tumour staging and potentially reducing late adverse effects such as secondary malignancy compared with radiation therapy. Retrospective studies have reported wide variability in short-term (pathological) and long-term (oncological) outcomes of radical prostatectomy. Surgical monotherapy continues to be appropriate for selected patients, whereas in others the best treatment strategy probably involves a multimodal approach. Appropriate risk stratification utilizing clinical, pathological and potentially also genomic risk data is imperative in the initial management of men with prostate cancer. However, data from ongoing and planned prospective trials are needed to identify the optimal management strategy for men with high-risk, localized prostate cancer.CD1d-dependent type I NKT cells, which are activated by lipid antigen, are known to play important roles in innate and adaptive immunity, as are a portion of type II NKT cells. However, the heterogeneity of NKT cells, especially NKT-like cells, remains largely unknown. Here, we report the profiling of NKT (NK1.1+CD3e+) cells in livers from wild type (WT), Jα18-deficient and CD1d-deficient mice by single-cell RNA sequencing. Unbiased transcriptional clustering revealed distinct cell subsets. The transcriptomic profiles identified the well-known CD1d-dependent NKT cells and defined two CD1d-independent NKT cell subsets. In addition, validation of marker genes revealed the differential organ distribution and landscape of NKT cell subsets during liver tumor progression. read more More importantly, we found that CD1d-independent Sca-1-CD62L+ NKT cells showed a strong ability to secrete IFN-γ after costimulation with IL-2, IL-12 and IL-18 in vitro. Collectively, our findings provide a comprehensive characterization of NKT cell heterogeneity and unveil a previously undefined functional NKT cell subset.There is considerable interest in understanding the genetics of erectile dysfunction (ED). Since early twin studies that suggested a genetic component to ED, multiple candidate gene studies have identified genetic variants that may be associated with ED. Genome-wide association studies (GWAS) have overcome some of the criticism of the candidate gene approach. Two recent GWAS studies have identified loci near SIM1 that may be associated with ED and have renewed interest in the leptin melanocortin signaling pathway. We review the current literature on the genetic basis of ED by highlighting several candidate genes and genetic variants associated with ED.Human and animal behaviour exhibits complex but regular patterns over time, often referred to as expressions of personality. Yet it remains unclear what personality really is is it just the behavioural patterns themselves, something in the brain, in the genes or perhaps all of these? Here we offer a set of causal hypotheses about the role of personality, integrating psychological and neuroscientific approaches to personality in a testable framework. These hypotheses clarify the causal and constitutive relations that personality has with genes, environment, brain, mind and behaviour, and we suggest specific experiments that can adjudicate amongst the different hypotheses. We focus on a set of models that propose that personality is instantiated in the brain, distally caused by genes and environment and, in turn, causing the overt behaviours from which it is often inferred. We argue that articulating and testing such models will be essential in a mature science of personality.