Cohenpatel2612

Z Iurium Wiki

As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning, the AMPK, glycolysis, beta-oxidation, and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes. These data indicated that Gln, Glu, and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed. Low energy feeding may increase the susceptibility of piglets to stress, which may decrease the efficacy of Gln, Glu, and Asp on the restoration of energy balance. These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.Two consecutive trials were conducted to investigate the effects of glucosinolates (GLS) in rapeseed cake (RSC) on nitrogen (N) metabolism and urine nitrous oxide (N2O) emissions in steers. In trial 1, 8 steers and 4 levels of RSC, i.e. 0, 2.7%, 5.4% and 8.0% dry matter (DM) (0, 6.0, 12.1, 18.1 μmol GLS/g DM) were allocated in a replicated 4 × 4 Latin square. In trial 2, the static incubation technique was used for measuring the N2O emissions of the urine samples collected from trial 1. The results of trial 1 indicated that dietary inclusion of RSC decreased the digested N and increased the fecal N excretion (P 0.10). Dietary inclusion of RSC decreased the urinary excretion of urea while it increased allantoin, total purine derivatives, the predicted rumen microbial N flow and thiocyanate (SCN) (P less then 0.05). Dietary inclusion of RSC did not affect the plasma triiodothyronine and thyroxine while it down-regulated the plasma relative concentrations of 4-aminohippuric acid, 3α,7α-dihydroxycoprostanic ac2O-N emissions in steers needs to be investigated in the future.The cost of feed represents an important part of the total cost in swine and poultry production (>60%) with energy accounting for at least 70% of feed cost. The energy value of ingredients or compound feeds can be estimated as digestible (DE), metabolisable (ME) and net energy (NE) in pigs and ME and NE in poultry. The current paper reviews the different methods for evaluating DE, ME and NE of feeds for monogastric animals and their difficulties and limits, with a focus on NE. In pigs and poultry, energy digestibility depends on the chemical characteristics of the feed, but also on technology (pelleting, for instance) and animal factors such as their health and body weight. The ME value includes the energy losses in urine that are directly dependent on the proportion of dietary N excreted in urine resulting in the concept of ME adjusted for a zero N balance (MEn) in poultry. For poultry, the concept of true ME (TME, TMEn), which excludes the endogenous fecal and urinary energy losses from the excreta energy, eed and animal factors, the environment, and the methods and concepts. Selleckchem Bemnifosbuvir Finally, as implemented in pigs, the use of NE values should be the objective of a more reliable energy system for poultry feeds.The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota-host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.Graded quantities of 1.38, 2.76 and 4.14 g/kg L-methionine were included in a control diet formulated to contain 3.07 g/kg digestible methionine. Each of the 4 dietary treatments was offered to 6 replicate cages (initially 8 birds per cage) from 1 to 21 d post-hatch. The parameters assessed included growth performance, nutrient utilisation (apparent metabolisable energy [AME], AMEGE ratios, N retention, N-corrected apparent metabolisable energy [AMEn]), apparent digestibility coefficients and disappearance rates of amino acids in the distal ileum. They also included free amino concentrations in systemic plasma (brachial vein) at 20 d post-hatch and in hepatic tissue at 14 and 21 d post-hatch. Graded L-methionine inclusions quadratically influenced weight gain (r = 0.688; P = 0.001) and FCR (r = 0.780; P less then 0.001). It may be deduced from the quadratic regressions that 3.43 g/kg L-methionine supported maximum weight gain of 1,036 g/kg and 3.50 g/kg L-methionine minimum FCR of 1.193, from 1 to 21 d post-hatch. The control diet contained specified levels of 3.07 g/kg digestible methionine and 13.0 g/kg digestible lysine. Thus, an inclusion of 3.465 g/kg L-methionine corresponded to a total of 6.535 g/kg methionine or a methionine-to-lysine ratio of 50.3, which is higher than standard recommendations. The implications of this and other outcomes of the present study are reported and discussed.This study was to characterise the undigested nutrients present along the gastrointestinal tract of birds offered common wheat- or maize-based diets, with the goal of optimising utilisation of enzymes to enhance digestive efficiency. Wheat- and maize-based diets were offered to 240 mixed-sex broilers (10 birds/pen; n = 12) from 1 to 35 d post-hatch. Digestibility of dry matter, starch, crude protein and non-starch polysaccharides (NSP) were measured in the crop, gizzard, duodenum, jejunum, ileum, caeca and excreta at d 12 and 35 post-hatch. Analysis of nutrient levels in the excreta presented that more than 30% of nutrients provided in the feed was wasted, irrespective of wheat or maize diet type. On average, 92 g/kg crude protein, 92 g/kg insoluble NSP and 14 g/kg oligosaccharides were not utilised by birds at d 12 post-hatch. The quantity of water-insoluble NSP in the small intestine at d 12 was lower in birds offered the wheat-based diet compared to those fed the maize-based diet (P less then 0.05), with the reverse being true for water-soluble NSP (P less then 0.001). On average, 84 g/kg crude protein, 79 g/kg insoluble NSP and 9 g/kg oligosaccharides remained in the excreta at 35 d of age. At this time period, accumulation of feed in the gizzard was noted for birds offered both diets, but was more pronounced in those offered the maize-based diet (P less then 0.001). Birds offered the maize-based diet demonstrated improved utilisation of oligosaccharides compared to those fed the wheat-based diet at both d 12 and 35 (P = 0.087 and P = 0.047, respectively). Protein utilisation in the jejunum and ileum was greater in birds offered the wheat-based diet compared to those fed the maize-based diet (P = 0.004 and P less then 0.001, respectively). Thus, while both diets supported standard growth performance of birds, the degree and flow of nutrient disappearance along the gastrointestinal tract was influenced by cereal type and bird age.Ferulic acid (FA) and vanillic acid (VA) are considered as major phenolic metabolites of cyanidin 3-glucoside, a polyphenol that widely exists in plants that possess a protective effect against oxidative stress and inflammation in our previous study. This study aimed to investigate the effect of FA and VA on inflammation, gut barrier function, and growth performance in a weaned piglet model challenged with lipopolysaccharide (LPS). Thirty-six piglets (PIC 337 × C48, 28 d of age) were randomly allocated into 3 treatments with 6 replicate pens (2 piglets per pen). They were fed with a basal diet or a diet containing 4,000 mg/kg of FA or VA. Dietary supplementation of VA significantly increased average daily gain (ADG) (P less then 0.05). Both FA and VA decreased serum levels of thiobarbituric acid reactive substances (TBARS), interlukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α (P less then 0.05), and enhanced the expression of tight junction protein oclaudin (P less then 0.05). Analysis of gut microbiota indicated that both FA and VA increased the Firmicutes/Bacteroidetes ratio alongside reducing the relative abundance of the Prevotellaceae family including Prevotella 9 and Prevotella 2 genera, but enriched the Lachoiraceaea family including the Lachnospiraceae FCS020 group (P less then 0.05). Moreover, VA reduced the relative abundance of Prevotella 7 and Prevotella 1 but enriched Lachnospira, Eubacterium eligens group, and Eubacterium xylanophilum group (P less then 0.05), while FA showed a limited effect on these genera. The results demonstrated that both VA and FA could alleviate inflammation and oxidative stress, but only VA has a significant positive effect on the growth performance of LPS-challenged piglets potentially through modulating gut microbiota.Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P less then 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P less then 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P less then 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.

Autoři článku: Cohenpatel2612 (Chang McCallum)