Coatesparker0144
The remaining 0.2% chlorfenapyr sprayed on the tea shoots represents a negligible health risk based on the RQ assessment. read more The pesticides with high vapor pressure and low water solubility were more recommended in tea garden for pest control.Northeast China (NEC) has unique climate characteristics and emission sources; continued urbanisation has aggravated regional pollution. The in situ observation data concerning PM2.5, visibility, surface meteorological elements and synchronous aerosol vertical extinction profiles obtained from ground-based Lidar were investigated to better understand local and regional particulate pollution in NEC. The WRF (3.7.1)/CAMx (6.40) model was employed to quantitative investigate the contribution of regional transport to PM2.5 in Shenyang. The results suggested that PM2.5 increased significantly from 9 to 14 January over NEC and the Northern China (NC), with monthly PM2.5 highest in Shijiazhuang and Baoding of NC about 145.2 ± 88.9 and 136.8 ± 83.1 μg m-3, respectively. The distribution of SO2 and NO2 for PM2.5 implied SO2 was more influence on PM2.5 in NEC, while NO2 has larger impact on PM2.5 in NC. The significant increasing of relative humidity (RH) and temperatures exhibited in the pollution indicate water vapor and warm air flow during the transport. The development of the southwest airflow was conducive to pollutant transport across the Beijing-Tianjin-Hebei (or Jing-Jin-Ji) megalopolis to NEC, and together with the local emissions in NEC to affect air quality. The modelling results pointed out that contribution of regional transport to PM2.5 in Shenyang was about 80.12% at 0000 LT in 10 January, of which the contribution of BTH was about 61.52%; the total regional contribution to PM2.5 in Shenyang reaching 60.70% at 0200 LT on 13 January including 34.56% contributed by BTH region. Aerosol vertical extinction indicated the particle layer appeared in the near-surface and in the upper atmospheric layer from 0.5 to 1.0 km following the development of transport event. The findings of this study can facilitate a comprehensive understanding of the local and regional air pollution in NEC and helpful for national environment pollution controls and improvement.The winter ecology of anadromous Arctic charr, an important fish species for Indigenous populations, has remained poorly detailed in the literature beyond descriptions of seasonal fasting and resulting declines in condition. However, prolonged periods of reduced feeding can have significant consequences for other variables, such as tissue contaminant levels. To more thoroughly detail seasonal changes, biological information (fork length, total weight, age, sex, somatic condition), stable isotopes (δ13C, % carbon, δ15N, % nitrogen), dorsal muscle % lipid, caloric densities, and total mercury (THg) concentrations were assessed in anadromous Arctic charr collected from Deception Bay, Canada, during the summer and over-wintering periods. Significant reductions in somatic condition, total weight, and % nitrogen, consistent with prolonged periods of fasting, were found for post-winter captured Arctic charr, but % lipid and caloric densities were significantly higher in these fish. THg also varied seasonally and wasearch highlights the importance of understanding seasonal dynamics for anadromous Arctic charr populations.A series of highly efficient adsorbents were developed using Ni3(BTC)2 and Co3(BTC)2 metal-organic frameworks (MOFs) and Fe3O4 magnetic nanoparticles (MNPs) to functionalize graphene oxide (GO). XRD results show high crystallinity of the prepared nanomaterials and the successful decoration of Ni3(BTC)2 and Co3(BTC)2 MOFs over the GO substrate (BTC = benzene-1,3,5-tricarboxylic acid). SEM and TEM imaging show the successful formation of nanoscale MOFs and Fe3O4 MNPs over GO. IR spectroscopy supports the characterization and successful preparation of the Fe3O4/MOF@GO hybrid composite nanoadsorbents. The prepared composite nanoadsorbents were used to sorb Methylene Blue (MB) as a model for common organic pollutants in water and common ions (Na+, Ca2+, Mg2+, SO42-, SiO32-) from a brackish water model. The adsorbed concentration at equilibrium of MB of the prepared composite nanoadsorbents increases by an average of 30.52 and 13.75 mg/g for the Co and Ni composite, respectively, when compared to the MOFs parent materials. The adsorbed amount of sulfate ions increases by 92.1 mg/g for the Co composite and 112.1 mg/g for the Ni composite, when compared to graphene oxide. This adsorption enhancement is attributed to suppressed aggregation through increased dispersive forces in the MOFs due to the presence of GO, formation of nanoscale MOFs over the GO platform, and the hindering of stacking of the graphene layers by the MOFs. Leaching tests show that the release of Co and Ni ions to water is reduced from 105.2 and 220 mg/L, respectively, in the parent MOF materials to 0.5 and 16.4 mg/L, respectively, in the composite nanoadsorbents. These findings show that the newly developed composite nanoadsorbents can sorb organic pollutants, and target sulfate and silicate anions, which makes them suitable candidates for water and wastewater treatments.Lignin is a precursor of humus in soil and sediment. Lignin can be separated from vascular plants in the form of lignosulfonate via pulping processes. On the other hand, composites of iron oxide and organic matter can adsorb heavy metals, and thus influence the migration of these heavy metals in the environment. In this paper, a hematite/lignosulfonate composite (HLS) was prepared via coprecipitation to compare the adsorption performance of hematite (α-Fe2O3) toward Cd(II) before and after the incorporation of lignosulfonate (LS). The HLS is found to exhibit a weakly crystalline structure and possess a large number of nanoscale particles. Specific surface area of HLS (291.97 m2/g) is about 11 times that of α-Fe2O3, and the pore volume of HLS (0.22 cm3/g) is twice that of α-Fe2O3. The adsorption of Cd(II) is well illustrated by the pseudo-second-order adsorption kinetics and the initial adsorption rate (h) of HLS is 13.83 times that of α-Fe2O3. The maximum adsorption capacities are significantly improved from 4.