Clifforddurham3460

Z Iurium Wiki

The Pearson correlation between the occurrence of high engine torque (above 65.0 Nm) and the number of PN spikes was estimated at 0.80. The number of PN spikes was highest on arterial roads where the vehicle speed was relatively low, but with high variability, and including a high number of sharp accelerations. This pattern of UFP emissions leads to high UFP concentrations along arterial roads in the inner city core.Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group basal diet; (Ⅱ) Cd group basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.Roxarsone, an extensively used organoarsenical feed additive, is often pooled in livestock wastewater. Sulfate exists ubiquitously in livestock wastewater and is capable for arsenic remediation. However, little is known about impacts of sulfate on roxarsone biotransformation during anaerobic digestion of livestock wastewater. In this study, the biodegradation of 5.0 mg L-1 roxarsone, and the accumulation and volatilization of the generated arsenical metabolites in a sulfate-spiked upflow anaerobic granular blanket reactor were investigated. Based on the analysis of degradation products, the nitro and arsenate groups of roxarsone were successively reduced to amino and arsenite groups before the C-As bond cleavage. Effluent arsenic concentration was ∼0.75 mg L-1, of which 82.9-98.5% were organoarsenicals. The maximum arsenic volatilization rate reached 32.6 μg-As kg-1-VS d-1. Adding 5.0 mg L-1 sulfate enabled 66.7% and 45.9% decrease in inorganic arsenic concentration and arsenic volatilization rate, respectively. Arsenic content in the anaerobic granular sludge (AGS) was accumulated to 1250 mg kg-1 within 420 days. Based on the results of FESEM-EDS and XPS, sulfate addition induced arsenic precipitation in the AGS through the formation of orpiment. Arsenic in the effluent, biogas and AGS accounted for 52.9%, 0.01% and 47.1% of the influent arsenic when the reactor operated stably. The findings from this study suggest that sulfate has effectively regulatory effects on arsenic immobilization and volatilization during anaerobic digestion of organoarsenic-contaminated livestock wastewater.Polybrominated biphenyl ethers (PBDEs) are commonly added to electronic products for flame-retardation effects, and are attracting more and more attentions due to their potential toxicity, durability and bioaccumulation. This study conducts a sysmtematic review to understand the human exposure to PBDEs from e-waste recycling, especially exploring the exposure pathways and human burden of PBDEs as well as investigating the temporal trend of PBDEs exposure worldwide. The results show that the particular foods (contaminated fish, poultry, meat and breast milk) ingestion, indoor dust ingestion and indoor air inhalation may be key factors leading to human health risks of PBDEs exposure in e-waste recycling regions. Residents and some vulnerable groups (occupational workers and children) in e-waste recycling areas may face higher exposure levels and health risks. PBDE exposure is closely related to exposure level, exposure duration, e-waste recycling methods, and dietary customs. High levels of PBDEs are found in human tissues (breast milk, hair, blood (serum), placenta and other tissues) in e-waste areas, at far higher levels than in other areas. Selleck Deferiprone Existing data indicate that PBDE exposure levels do not present any apparent downward trend, and will possibly cause serious human diseases. More epidemiological studies are still needed to provide a solid basis for health risk assessment.Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most well-known pharmaceuticals with a broad scope of properties that are widely used in human and veterinary medicine. Because of their extensive utilization, NSAIDs are commonly identified in the environment as trace emerging contaminants. Regardless of vast experience with these drugs, NSAIDs are full of contradictions that trigger major concerns for environmental researchers. A limited understanding on NSAID's occurrence, distribution and eco-toxicological effects have led to an escalated dilemma in the last decade. Thus, a broad-spectrum study covering all aspects of occurrence, detection and removal is required to meet the fundamental levels of knowledge on the effects of NSAIDs in all exposed environmental aspects. Therefore, this paper focuses on classifying the sources and entry points of residual NSAIDs. Further, detecting and regulating their concentrations in both input streams and receiving environments, along with the removal processes of this specific class of emerging compounds, in the direction of developing a management policy is comprehensively reviewed.The Deepwater Horizon (DWH) oil spill caused an estimated 100,000 bird mortalities. However, mortality estimates are often based on the number of visibly oiled birds and likely underestimate the true damage to avian populations as they do not include toxic effects from crude oil ingestion. Elevated susceptibility to disease has been postulated to be a significant barrier to recovery for birds that have ingested crude oil. Effective defense against pathogens involves integration of physiological and behavioral traits, which are regulated in-part by cytokine signaling pathways. In this study, we tested whether crude oil ingestion altered behavioral and physiological aspects of disease defense in birds. To do so, we used artificially weathered Mississippi Canyon 242 crude oil to orally dose zebra finches (Taeniopygia guttata) with 3.3 mL/kg or 10 mL/kg of crude oil or a control (peanut oil) for 14 days. We measured expression of cytokines (interleukin [IL]-1β, IL-6, IL-10) and proinflammatory pathways (NF-κB, COse defense.Microplastics (MPs) are currently one of the primary marine pollution problems around the world. MPs are distributed throughout the water column, dependent mainly on the density that is given by the polymer type, as well as the location, depth, and velocities of the water flows. This situation allows all aquatic organisms to be exposed to MPs. Furthermore, toxic substances can adhere to the MPs, making the consumption of fish with MPs a risk to human health. The aim of this study was to evaluate and characterize the microplastics present in the gastrointestinal tract of six species of fish which had the highest human consumption in Campeche, Mexico and their relationship with the density of MPs founded. A total of 316 microplastic particles from 240 individuals were found with 1.31 ± 2.59 of microplastics per fish. The results indicate that there are differences (KW-H = 53.14) between the densities of the MPs present in demersal fish (1.41 ± 0.4 g cm-3) with respect to the pelagic species (1.04 ± 0.24 g cm-3). Likewise, differences were found between fibers, fragments, and pellets present in the studied fish with a pelagic demersal ratio of 1 2.4 for all microplastics. The demersal species Haemulon plumierii (n = 40) presented the highest number of MPs with 115 items in total, 73 fibers, and 42 fragments. The results of this research show the first evidence that the density of the material from which microplastics are made play a key role determining their fate in marine fish habitats.Nitrogen production is one of the major aspects of global change over the past century. Nowhere is this change more dramatic than in China. Understanding the variations and driving forces of nitrogen loss from planting is critical to the sustainable development of Chinese agriculture. Here we found total nitrogen (TN) loss of China showed an overall downward trend from 2007 to 2016, as a result of abatement strategies for China on "Soil Testing and Formula Fertilization" and "Reducing Fertilizer Application while Increase the Efficiency", based on the data of National Agricultural Pollution Survey. The results of structural equation model showed that the path coefficient of anthropogenic drivers and natural conditions on TN loss were 0.934 and -0.137 respectively, suggesting that anthropogenic drivers had greater effects on TN loss than natural conditions. In terms of anthropogenic drivers, fertilizer usage and consumption of chemical pesticides were the two major factors affecting TN loss with path coefficients of 0.958 and 0.946, respectively, which was mainly related to their over-application. For natural conditions, relative humidity, water supply situation, and annual precipitation were found to be the dominant factors affecting TN loss, revealing that moist soils increased TN loss by enhancing ammonia volatilization, denitrification and nitrogen leaching. Forecasts for 2050, under two scenarios especially for the high TN loss scenario, the indication sifts that China will face a high risk of increasing TN loss from planting, suggesting that China's abatement strategies cannot be slackened. Here, the current status and future trends of China's nitrogen loss provide direction and pertinence to Chinese abatement strategies for nitrogen, effectively preventing and controlling agricultural non-point source pollution.To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.

Autoři článku: Clifforddurham3460 (Larkin Harmon)