Clemonsrandolph8251

Z Iurium Wiki

impairments with pregnancy were observed.As the most developed city circle in northern China, allocating CO2 emission quotas at the Bohai Rim Economic Circle (BREC) city level is essential for developing specific abatement policies. Thus, with reflecting multi-principles (fairness, efficiency, sustainability, and feasibility), this paper formulates the CO2 emission quota allocation among cities in BREC in 2030 based on the multi-objective decision approach. We first propose three allocation schemes based on the principles of fairness, efficiency, and sustainability, which are conducted by entropy method, zero-sum gains data envelopment (ZSG-DEA) model, and CO2 sequestration share method, respectively. Then, the CO2 allocation satisfaction is defined and used to measure the feasibility principle which is integrated as the objective function of the multi-objective decision model together with three allocation schemes to obtain the optimal allocation results. The results show that Beijing, Tianjin, Dalian, Shijiazhuang, Yantai, Weifang, and Linyi enjoy the largest CO2 emission quotas, having 1179.94 Mt in total and accounting for 31%. Beijing has the highest quotas, and Laiwu has the lowest emission quotas. Cities with large energy consumption and less CO2 sequestration capacity, such as Tianjin, Handan, and Tangshan, experience a decrease in the emission quota shares from 2017 to 2030, indicating that these cities would undertake large emission reduction obligations. Sensitivity analysis shows that Beijing, Zibo, and Jinan are more sensitive to minimum satisfaction changes, and the total satisfaction experiences an increase first and declines thereafter. Based on the results above, cities with large pressure to reduce CO2 emissions should not only promote economic development but also improve the capacity of CO2 sequestration by enhancing environmental protection to realize emission reduction targets.Predictions of pore pressure and seepage discharge are the most important parameters in the design of earth dams and assessing their safety during the operational period as well. In this research, soft computing models namely multi-layer perceptron neural network (MLPNN), support vector machine (SVM), multivariate adaptive regression splines (MARS), genetic programming (GP), M5 algorithm, and group method of data handling (GMDH) were used to predict the piezometric head in the core and the seepage discharge through the body of earth dam. For this purpose, the data recorded by the absolute instrument during the last 94 months of Shahid Kazemi Bukan Dam were used. The results showed that all of the applied models had a permissible level of accuracy in the prediction of the piezometric heads. The average error indices for the models in the training phase were R2= 0.957 and RMSE= 0.806 and in the testing phase were equal to R2= 0.949 and RMSE= 0.932, respectively. The performances of all models except the M5 and MARS in predicting seepage discharge are nearly identical; however, the best is the MARS, and the weakest is the M5 algorithm.This study assessed the capacity of leaf litters to adsorb copper ions applied as a copper-based pesticide. Leaf litters of two fruit tree species with different lignin/N ratios were examined to determine their protective role against the incorporation of Cu into soil. A leaf litter Cu-adsorption capacity assay and a degradation assay were performed using table grape (lignin/N = 2.35) and kiwi (lignin/N = 10.85) leaf litters. Table grape leaf litter had a significantly (p = 0.001) higher Cu-adsorption capacity (15,800 mg kg-1) than kiwi leaf litter (14,283 mg kg-1). Following leaf litter degradation, significant differences (p = 0.011) were observed in the release of Cu from Cu-enriched leaf litter into soil, showing that kiwi litter has a greater protective effect against the incorporation of Cu into soil, regardless of the amount of Cu applied. this website This protective role is reflected in a significantly higher (p = 0.015) Cu concentration in table grape soil (41.71 ± 2.14 mg kg-1) than in kiwi soil (35.87 ± 0.69 mg kg-1). Therefore, leaf litter with higher lignin/N ratio has greater protective role against copper incorporation into soil.We investigated three common alkaline agents (NaOH, CaO, and Mg(OH)2) for immobilization of four heavy metals (Pb, Zn, Cu, and Cd) in a field-contaminated soil and elucidated the underpinning principles. NaOH caused the highest pH spike in the soil, while CaO and Mg(OH)2 served as a longer-lasting source of OH-. Amending the soil with CaO or Mg(OH)2 at ≥0.1 mol as OH- (kg·soil)-1 for 24 h was able to immobilize all four metals, while NaOH failed. NaOH leached up to 3 times more organic carbon than CaO and Mg(OH)2, resulting in elevated leachability of the metals. Column elution tests showed that amendments by CaO and Mg(OH)2 lowered the leachable Pb2+, Zn2+, Cu2+, and Cd2+ by 52-54%, 71-75%, 69-73%, and 68%, respectively, after 1440 pore volumes of elution. Sequential extraction revealed that the soil amendments converted the exchangeable fraction of the metals to the much less available forms. XRD and FTIR analyses indicated that formation of metal oxide precipitates and complexation with soil organic matter were responsible for the metals immobilization. Taken together the chemical cost, technical effectiveness, and environmental impact, CaO is the most suitable alkaline agent for remediation of soil contaminated with heavy metals.In more than two-thirds of the diabetic foot ulcer (DFUs) cases, lower limb amputation of foot ulceration is caused by the infection. The role of transition a metal complex as a therapeutic compound is becoming increasingly important. In vitro, four groups of antibiotics and one sulfa drug were tested against diabetic foot resistant bacteria. Using three concentrations of two different prepared metal complexes copper (Cu) and silver (Ag) - isoniazid (Iso) and nicotinamide (Nicot) were tested against diabetic foot isolates. Results revealed that β-lactam drugs (cephradine and piperacillin) showed the minimum averages of MIC 265 μg/ml against Gram-positive and Gram-negative isolates. Silver isoniazid (Iso-Ag-1) metal complex was selected depending on the maximum averages of MIC against both types of clinical isolates. The combination between β-lactams and Iso-Ag-1 showed maximum FICI averages of 0.24 for Gram-positive and 0.28 for Gram-negative. In addition, a combination between Iso-Ag-1 with squilla chitosan nanoparticles (CSSq-nAg) showed averages of synergistic index by 0.

Autoři článku: Clemonsrandolph8251 (Lindahl Hvid)