Clemensenmckenna2685
Owing to the ionic nature of lead halide perovskites, their halide-terminated surface is unstable under light-, thermal-, moisture-, or electric-field-driven stresses, resulting in the formation of unfavorable surface defects. As a result, nonradiative recombination generally occurs on perovskite films and deteriorates the efficiency, stability, and hysteresis performances of perovskite solar cells (PSCs). Here, a surface iodide management strategy was developed through the use of cesium sulfonate to stabilize the perovskite surface. It was found that the pristine surface of common perovskite was terminated with extra iodide, that is, with an I-/Pb2+ ratio larger than 3, explaining the origination of surface-related problems. Through post-treatment of perovskite films by cesium sulfonate, the extra iodide on the surface was facilely removed and the as-exposed Pb2+ cations were chelated with sulfonate anions while maintaining the original 3D perovskite structure. Such iodide replacement and lead chelating coordination on perovskite could reduce the commonly existing surface defects and nonradiative recombination, enabling assembled PSCs with an efficiency of 22.06% in 0.12 cm2 cells and 18.1% in 36 cm2 modules with high stability.Both 1,2,4-trisubstitution and dearomative 1,2,4-trifunctionalization of benzyne have been accomplished from sulfoxides bearing a penta-2,4-dien-1-yl moiety. These cascade transformations proceed through a benzyne insertion into the S═O bond and an uncommon regiospecific anionic [4,5]-sigmatropic rearrangement, furnishing a C-O, C-S, and C-C bond on the C1-, C2-, and C4-position of a benzene ring, respectively. This study showcases new cascade benzyne reaction modes involving both distal C-H bond functionalization and dearomatization.The bromodomain and extra terminal (BET) protein family recognizes acetylated lysines within histones and transcription factors using two N-terminal bromodomains, D1 and D2. The protein-protein interactions between BET bromodomains, acetylated histones, and transcription factors are therapeutic targets for BET-related diseases, including inflammatory disease and cancer. Prior work demonstrated that methylated-1,2,3-triazoles are suitable N-acetyl lysine mimetics for BET inhibition. Here we describe a structure-activity relationship study of triazole-based inhibitors that improve affinity, D1 selectivity, and microsomal stability. These outcomes were accomplished by targeting a nonconserved residue, Asp144 and a conserved residue, Met149, on BRD4 D1. The lead inhibitors DW34 and 26 have a BRD4 D1 Kd of 12 and 6.4 nM, respectively. Cellular activity was demonstrated through suppression of c-Myc expression in MM.1S cells and downregulation of IL-8 in TNF-α-stimulated A549 cells. These data indicate that DW34 and 26 are new leads to investigate the anticancer and anti-inflammatory activity of BET proteins.Microplastic particles can be deposited to sediments and subsequently ingested by benthic organisms. It is unknown to what extent ingestion of microplastic is taxon-specific or whether taxa can be selective toward certain types of microplastics. Here, we used state-of-the-art automated micro-Fourier-transform infrared (μFTIR) imaging and attenuated total reflectance FTIR spectroscopy to determine small-size (20-500 μm) and large-size (500-5000 μm) microplastic particles in sediments and a range of benthic invertebrate species sampled simultaneously from the Dommel River in the Netherlands. Microplastic number concentrations differed across taxa at the same locations, demonstrating taxon-specific uptake, whereas size distributions were the same across sediments and taxa. At the site with the highest concentration, microplastic occupied up to 4.0% of the gut volume of Asellidae. Particle shape distributions were often not statistically different between sediments and taxa, except for Astacidea at one of the locations where the proportion of particles with a length to width ratio >3 (i.e., fibers) was twice as high in sediments than in Astacidea. Acrylates/polyurethane/varnish was predominately found in sediments, while soft and rubbery polymers ethylene propylene diene monomer and polyethylene-chlorinated were the dominant polymers found in invertebrates. click here Microplastic polymer composition and thus polymer density differed significantly between invertebrates and their host sediment. Trophic transfer at the base of the food web appears to have a filter function with respect to microplastic particle types and shapes. Together with the very high ingestion rates, this has clear implications for ecological and human health risks, where uptake concerns edible species (e.g., Astacidea).Sequencing glycans is demanding due to their structural diversity. Compared to mammalian glycans, bacterial glycans pose a steeper challenge because they are constructed from a larger pool of monosaccharide building blocks, including pyranose and furanose isomers. Though mammalian glycans incorporate only the pyranose form of galactose (Galp), many pathogens, including Mycobacterium tuberculosis and Klebsiella pneumoniae, contain galactofuranose (Galf) residues in their cell envelope. Thus, glycan sequencing would benefit from methods to distinguish between pyranose and furanose isomers of different anomeric configurations. We used infrared multiple photon dissociation (IRMPD) spectroscopy with mass spectrometry (MS-IR) to differentiate between pyranose- and furanose-linked galactose residues. These targets pose a challenge for MS-IR because the saccharides lack basic groups, and galactofuranose residues are highly flexible. We postulated cationic groups that could complex through hydrogen bonding would offer a solution. Here, we present the first MS-IR analysis of hexose ammonium adducts. We compared their IR fingerprints with those of lithium adducts. We determined the diagnostic MS-IR signatures of the α- and β-anomers of galactose in furanose and pyranose forms. We also showed these signatures could be applied to disaccharides to assign galactose ring size. Our findings highlight the utility of MS-IR for analyzing the unique substructures that occur in bacterial glycans.