Clarkballe7493

Z Iurium Wiki

To justify the model parameters, we use the incidence data from the city of Jakarta, Indonesia. The data pertain to infected individuals who self-isolate in their homes and visit the hospital for further treatment. Our numerical experiments indicate that strict social distancing has the potential to succeed in reducing and delaying the time of an outbreak. However, if the strict social distancing policy is relaxed, a massive rapid-test intervention should be conducted to avoid a large-scale outbreak in the future.The outbreak of COVID-19 has caused severe life and economic damage worldwide. Since the absence of medical resources or targeted therapeutics, systemic containment policies have been prioritized but some critics query what extent can they mitigate this pandemic. We construct a fine-grained transmission dynamics model to forecast the crucial information of public concern, therein using dynamical coefficients to quantify the impact of the implement schedule and intensity of the containment policies on the spread of epidemic. Statistical evidences show the comprehensive identification and quarantine policies eminently contributed to reduce casualties during the phase of a dramatic increase in diagnosed cases in Wuhan and postponing or weakening such policies would undoubtedly exacerbate the epidemic. Hence we suggest that governments should swiftly execute the forceful public health interventions in the initial stage until the pandemic is blocked.А model of coronavirus incidence is proposed. Process of disease development is represented as analogue of first- and second order phase transition in physical systems. The model is very simple in terms of the data necessary for the calculations. To verify the proposed model, only data on the current incidence rate are required. However, the determination coefficient of model R2 is very high and exceeds 0.95 for most countries. The model permits the accurate prediction of the pandemics dynamics at intervals of up to 10 days. The ADL(autoregressive distributed lag)-model was introduced in addition to the phase transition model to describe the development of the disease at the exponential phase.The ADL-model allows describing nonmonotonic changes in relative infection over the time, and providing to governments and health care decision makers the possibility to predict the outcomes of their decisions on public health.In the era of advanced mobile technology, freedom of expression over social media has become prevalent among online users. This generates a huge amount of communication that eventually forms a ground for extensive research and analysis. The social network analysis allows identifying the influential people in society over microblogging platforms. Twitter, being an evolving social media platform, has become increasingly vital for online dialogues, trends, and content virality. Applications of discovering influential users over Twitter are manifold. It includes viral marketing, brand analysis, news dissemination, health awareness spreading, propagating political movement, and opinion leaders for empowering governance. In our research, we have proposed a sustainable approach, namely Weighted Correlated Influence (WCI), which incorporates the relative impact of timeline-based and trend-specific features of online users. Our methodology considers merging the profile activity and underlying network topology to designate online users with an influence score, which represents the combined effect. To quantify the performance of our proposed method, the Twitter trend #CoronavirusPandemic is used. Also, the results are validated for another social media trend. The experimental outcomes depict enhanced performance of proposed WCI over existing methods that are based on precision, recall, and F1-measure for validation.Similar to other epidemics, the novel coronavirus (COVID-19) spread very fast and infected almost two hundreds countries around the globe since December 2019. The unique characteristics of the COVID-19 include its ability of faster expansion through freely existed viruses or air molecules in the atmosphere. Assuming that the spread of virus follows a random process instead of deterministic. The continuous time Markov Chain (CTMC) through stochastic model approach has been utilized for predicting the impending states with the use of random variables. The proposed study is devoted to investigate a model consist of three exclusive compartments. The first class includes white nose based transmission rate (termed as susceptible individuals), the second one pertains to the infected population having the same perturbation occurrence and the last one isolated (quarantined) individuals. We discuss the model's extinction as well as the stationary distribution in order to derive the the sufficient criterion for the persistence and disease' extinction. Lastly, the numerical simulation is executed for supporting the theoretical findings.We propose a data driven epidemic model using the real data on the infection, recovery and death cases for the analysis of COVID-19 progression in India. The model assumes continuation of existing control measures such as lockdown and quarantines, the suspected and confirmed cases and does not consider the scenario of 2nd surge of the epidemic due to any reason. The model is arrived after least square fitting of epidemic behaviour model based on theoretical formulation to the real data of cumulative infection cases reported between 24 March 2020 and 30May 2020. The predictive capability of the model has been validated with real data of infection cases reported during June 1-10, 2020. A detailed analysis of model predictions in terms of future trend of COVID-19 progress individually in 18 states of India and India as a whole has been attempted. Infection rate in India, as a whole, is continuously decreasing with time and has reached 3 times lower than the initial infection rate after 6 weeks of lock down suggeor policy makers to track peak time and maximum active infected cases based on latest trend in data for medical readiness and taking epidemic management decisions.The fact that no there exists yet an absolute treatment or vaccine for COVID-19, which was declared as a pandemic by the World Health Organization (WHO) in 2020, makes very important spread out over time of the epidemic in order to burden less on hospitals and prevent collapsing of the health care system. This case is a consequence of limited resources and is valid for all countries in the world facing with this serious threat. Slowing the speed of spread will probably make that the outbreak last longer, but it will cause lower total death count. In this study, a new SEIR epidemic model formed by taking into account the impact of health care capacity has been examined and local and global stability of the model has been analyzed. In addition, the model has been also supported by some numerical simulations.This work examines the impact of various non-pharmaceutical control measures (government and personal) on the population dynamics of the novel coronavirus disease 2019 (COVID-19) in Lagos, Nigeria, using an appropriately formulated mathematical model. Using the available data, since its first reported case on 16 March 2020, we seek to develop a predicative tool for the cumulative number of reported cases and the number of active cases in Lagos; we also estimate the basic reproduction number of the disease outbreak in the aforementioned State in Nigeria. Using numerical simulations, we show the effect of control measures, specifically the common social distancing, use of face mask and case detection (via contact tracing and subsequent testings) on the dynamics of COVID-19. We also provide forecasts for the cumulative number of reported cases and active cases for different levels of the control measures being implemented. Numerical simulations of the model show that if at least 55% of the population comply with the social distancing regulation with about 55% of the population effectively making use of face masks while in public, the disease will eventually die out in the population and that, if we can step up the case detection rate for symptomatic individuals to about 0.8 per day, with about 55% of the population complying with the social distancing regulations, it will lead to a great decrease in the incidence (and prevalence) of COVID-19.Were southern hemisphere countries right to undertake national lockdown during their summer time? Were they right to blindly follow the self-isolation wave that hit European countries in full winter? As a southern hemisphere country like South Africa stands now as the most COVID-19 and HIV affected country in Africa, we use in this paper, recent COVID-19 data to provide a statistical and comparative analysis that may alert southern hemisphere countries entering the winter season. After that, we use a generalized simple mathematical model of HIV-COVID-19 together with graphs, curves and tables to compare the pandemic situation in countries that were once the epicenter of the disease, such as China, Italy, Spain, United Kingdom (UK) and United States of America (USA). read more We perform stability and bifurcation analysis and show that the model contains a forward and a backward bifurcation under certain conditions. We also study different scenarios of stability/unstability equilibria for the model. The fractional (generalized) COVID-19 model is solved numerically and a predicted prevalence for the COVID-19 is provided. Recall that Brazil and South Africa share number of similar social features like Favellas (Brazil) and Townships (South Africa) with issues like promiscuity, poverty, and where social distanciation is almost impossible to observe. We can now ask the following question Knowing its HIV situation, is South Africa the next epicenter in weeks to come when winter conditions, proven to be favorable to the spread of the new coronavirus are comfily installed?The novel coronavirus disease (COVID-19) is a public health problem once according to the World Health Organization up to June 24th, 2020, more than 9.1 million people were infected, and more than 470 thousand have died worldwide. In the current scenario, the Brazil and the United States of America present a high daily incidence of new cases and deaths. Therefore, it is important to forecast the number of new cases in a time window of one week, once this can help the public health system developing strategic planning to deals with the COVID-19. The application of the forecasting artificial intelligence (AI) models has the potential of deal with dynamical behavior of time-series like of COVID-19. In this paper, Bayesian regression neural network, cubist regression, k-nearest neighbors, quantile random forest, and support vector regression, are used stand-alone, and coupled with the recent pre-processing variational mode decomposition (VMD) employed to decompose the time series into several intrinsic mode functecasting and be used to assist in the development of public policies to mitigate the effects of COVID-19 outbreak.In this paper, an age-structured epidemic model for coupling within-host and between-host dynamics in environmentally-driven infectious diseases is investigated. The model is described by a mixed system of ordinary and partial differential equations which is constituted by the within-host virus infectious fast time ordinary system and the between-host disease transmission slow time age-structured system. The isolated fast system has been investigated in previous literatures, and the main results are introduced. For the isolated slow system, the basic reproduction number Rb0, the positivity and ultimate boundedness of solutions are obtained, the existence of equilibria, the local stability of equilibria, and the global stability of disease-free equilibrium are established. We see that when Rb0 ≤ 1 the system only has the disease-free equilibrium which is globally asymptotically stable, and when Rb0 > 1 the system has a unique endemic equilibrium which is local asymptotically stable. With regard to the coupled slow system, the basic reproduction number Rb , the positivity and boundedness of solutions and the existence of equilibria are firstly obtained.

Autoři článku: Clarkballe7493 (Enevoldsen Choate)