Clancyrichards3622
The results revealed that the parasites had higher concentrations than all the tissues of S. marginatus, P. lineatus from Baía River and Paraná River. The high Cd concentrations in these parasites derived from their bioaccumulation capacity, because of the absorption of nutrients directly from the intestinal content of the fish through the tegument, as well as for the presence of Cd on the surface waters of Praná River floodplain. Besides that, the Coefficient of Spearman Rank Correlation showed that the infrapopulation size seems to affect Cd bioaccumulation in the parasites, smaller infrapopulations demonstrate a higher accumulation capacity compared to the larger ones. With that, we concluded that the two acanthocephalans species analyzed in this study have a good capacity for Cd accumulation, and can be used as accumulation indicators of trace-metal pollution. Accumulation indicators provide important information on the biological availability of pollutants.Electro-oxidation of acetaminophen (ACT) in three different doped secondary effluents collected from a conventional Municipal Waste Water Treatment Plant (MWWTP), a MWWTP using a membrane bioreactor (WWTP MBR) and a lab-scale MBR treating source-separated urine (Urine MBR) was investigated by electro-Fenton (EF) coupled with anodic oxidation (AO) using sub-stoichiometric titanium oxide anode (Ti4O7). After 8 h of treatment, 90 ± 15%, 76 ± 3.8% and 46 ± 1.3% of total organic carbon removal was obtained for MWWTP, MWWTP-MBR and Urine-MBR respectively, at a current intensity of 250 mA, pH of 3 and [Fe2+] = 0.2 mM. Faster degradation of ACT was observed in the WWTP MBR because of the lower amount of competitive organic matter, however, >99% degradation of ACT was obtained after 20 min for all effluents. The acute toxicity of the treated effluent was measured using Microtox® tests. Results showed an initial increase in toxicity, which could be assigned to formation of more toxic by-products than parent compounds. From 3D excitation and emission matrix fluorescence (3DEEM), different reactivity was observed according to the nature of the organic matter. Particularly, an increase of low molecular weight organic compounds fluorescence was observed during Urine MBR treatment. This could be linked to the slow decrease of the acute toxicity during Urine MBR treatment and ascribed to the formation and recalcitrance of toxic organic nitrogen and chlorinated organic by-products. By comparison, the acute toxicity of other effluents decreased much more rapidly. Finally, energy consumption was calculated according to the objective to achieve (degradation, absence of toxicity, mineralization).Environmental DNA (eDNA) metabarcoding and metagenomics analyses can improve taxonomic resolution in biodiversity studies. Only recently, these techniques have been applied in aerobiology, to target bacteria, fungi and plants in airborne samples. Here, we present a nine-month aerobiological study applying eDNA metabarcoding in which we analyzed simultaneously airborne diversity and variation of fungi and plants across five locations in North and Central Italy. We correlated species composition with the ecological characteristics of the sites and the seasons. The most abundant taxa among all sites and seasons were the fungal genera Cladosporium, Alternaria, and Epicoccum and the plant genera Brassica, Corylus, Cupressus and Linum, the latter being much more variable among sites. PERMANOVA and indicator species analyses showed that the plant diversity from air samples is significantly correlated with seasons, while that of fungi varied according to the interaction between seasons and sites. The results consolidate the performance of a new eDNA metabarcoding pipeline for the simultaneous amplification and analysis of airborne plant and fungal particles. They also highlight the promising complementarity of this approach with more traditional biomonitoring frameworks and routine reports of air quality provided by environmental agencies.Although fumigants can effectively control soil-borne diseases they are typically harmful to beneficial microorganisms unless methods are developed to encourage their survival after fumigation. The soil fumigant 1,3-dichloropropene (1,3-D) is widely used because of its effective management of pathogenic nematodes and weeds. After fumigation with 1,3-D, Bacillus subtilis and Trichoderma harzianum fertilizer (either singularly or together) or humic acid were added to soil that had been used to produce tomatoes under continuous production for >20 years. We evaluated changes to the soil's physicochemical properties and enzyme activity in response to these fertilizer treatments, and the effects of these changes on beneficial bacteria. read more Fertilizer applied after fumigation increased the content of ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium and organic matter, and it promoted an increase in pH and electrical conductivity. The activity of urease, sucrase and catalase enzymes in the soil increased after fumigation. Taxonomic identification of bacteria using genetic analysis techniques showed that fertilizer applied after fumigation increased the abundance of Actinobacteria and the relative abundance of the biological control genera Sphingomona, Pseudomonas, Bacillus and Lysobacter. The abundance of these beneficial bacteria increased significantly when B. subtilis and T. harzianum were applied together. These results showed that fertilizer applied after fumigation can increase the abundance of beneficial microorganisms in the soil within a short period of time, which improved the soil's fertility, ecological balance and potentially crop quality and yield.Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface.