Churchillsteele5536

Z Iurium Wiki

More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic community biodiversity, detected in PM10 samples collected from July 2018 to June 2019 at a coastal site representative of the Central Mediterranean, is provided in this study. Viridiplantae and Fungi were the most abundant eukaryotic kingdoms. Streptophyta was the prevailing Viridiplantae phylum, whilst Ascomycota and Basidiomycota were the prevailing Fungi phyla. Brassica and Panicum were the most abundant Streptophyta genera in winter and summer, respectively, whereas Olea was the most abundant genus in spring and autumn. With regards to Fungi, Botrytis and Colletotrichum were the most abundant Ascomycota genera, reaching the highest abundance in spring and summer, respectively, while Cryptococcus and Ustilago were the most abundant Basidiomycota genera, and reached the highest abundance in winter and spring, respectively. The genus community structure in the PM10 samples varied day-by-day, and mainly along with the seasons. The impact of long-range transported air masses on the same structure was also proven. Nevertheless, rather few genera were significantly correlated with meteorological parameters and PM10 mass concentrations. The PCoA plots and non-parametric Spearman's rank-order correlation coefficients showed that the strongest correlations generally occurred between parameters reaching high abundances/values in the same season or PM10 sample. Moreover, the screening of potential pathogenic fungi allowed us to detect seven potential pathogenic genera in our PM10 samples. We also found that, with the exception of Panicum and Physcomitrella, all of the most abundant and pervasive identified Streptophyta genera could serve as potential sources of aeroallergens in the studied area.Tetrodotoxin (TTX) is a potent neurotoxin that was first identified in pufferfish but has since been isolated from an array of taxa that host TTX-producing bacteria. However, determining its origin, ecosystem roles, and biomedical applications has challenged researchers for decades. Recognized as a poison and for its lethal effects on humans when ingested, TTX is primarily a powerful sodium channel inhibitor that targets voltage-gated sodium channels, including six of the nine mammalian isoforms. Although lethal doses for humans range from 1.5-2.0 mg TTX (blood level 9 ng/mL), when it is administered at levels far below LD50, TTX exhibits therapeutic properties, especially to treat cancer-related pain, neuropathic pain, and visceral pain. Furthermore, TTX can potentially treat a variety of medical ailments, including heroin and cocaine withdrawal symptoms, spinal cord injuries, brain trauma, and some kinds of tumors. Here, we (i) describe the perplexing evolution and ecology of tetrodotoxin, (ii) review its mechanisms and modes of action, and (iii) offer an overview of the numerous ways it may be applied as a therapeutic. There is much to be explored in these three areas, and we offer ideas for future research that combine evolutionary biology with therapeutics. The TTX system holds great promise as a therapeutic and understanding the origin and chemical ecology of TTX as a poison will only improve its general benefit to humanity.Mycotoxins contaminate crops worldwide and play a role in animal health and performance. Multiple mycotoxins may co-occur which may increase the impact on the animal. To assess the multiple mycotoxin profile of corn (Zea mays), we conducted a 7-year survey of new crop corn grain and silage in the United States. A total of 711 grain and 1117 silage samples were collected between 2013 and 2019 and analyzed for the simultaneous presence of 35 mycotoxins using ultra-performance liquid chromatography-tandem mass spectrometry. The measured mean number of mycotoxins per sample were 4.8 (grain) and 5.2 (silage), ranging from 0 to 13. Fusaric acid (FA) was most frequently detected in 78.1 and 93.8% of grains and silages, respectively, followed by deoxynivalenol (DON) in 75.7 and 88.2% of samples. Fumonisin B1 (FB1), fumonisin B2 and 15-acetyl-deoxynivalenol (15ADON) followed. The greatest (p less then 0.05) co-occurrence was between FA and DON in 59.1% of grains and 82.7% of silages, followed by FA with FB1, DON with 15ADON, and FA with 15ADON. Although many samples had lower mycotoxin concentrations, 1.6% (grain) and 7.9% (silage) of tested samples had DON ≥ 5000 µg/kg. Fumonisins were detected ≥ 10,000 µg/kg in 9.6 and 3.9% of grain and silage samples, respectively. Concentrations in grain varied by year for eight mycotoxin groups (p less then 0.05), while all 10 groups showed yearly variations in silage. Our survey suggest that multiple mycotoxins frequently co-occur in corn grain and silage in the United States, and some of the more prevalent mycotoxins are those that may not be routinely analyzed (i.e., FA and 15ADON). Assessment of multiple mycotoxins should be considered when developing management programs.We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. 680C91 in vitro If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40-60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.The tomato is one of the most consumed agri-food products in Lebanon. Several fungal pathogens, including Alternaria species, can infect tomato plants during the whole growing cycle. Alternaria infections cause severe production and economic losses in field and during storage. In addition, Alternaria species represent a serious toxicological risk since they are able to produce a wide range of mycotoxins, associated with different toxic activities on human and animal health. Several Alternaria species were detected on tomatoes, among which the most important are A. solani, A. alternata, and A. arborescens. A set of 49 Alternaria strains isolated from leaves and stems of diseased tomato plants were characterised by using a polyphasic approach. All strains were included in the recently defined phylogenetic Alternaria section and grouped in three well-separated sub-clades, namely A. alternata (24 out of 49), A. arborescens (12 out of 49), and A. mali morpho-species (12 out of 49). One strain showed high genetic similarity with an A.limoniasperae reference strain. Chemical analyses showed that most of the Alternaria strains, cultured on rice, were able to produce alternariol (AOH), alternariol methyl ether (AME), altenuene (ALT) and tenuazonic acid (TA), with values up to 5634, 16,006, 5156, and 4507 mg kg-1, respectively. In addition, 66% of the strains were able to co-produce simultaneously the four mycotoxins investigated. The pathogenicity test carried out on 10 Alternaria strains, representative of phylogenetic sub-clades, revealed that they were all pathogenic on tomato fruits. No significant difference among strains was observed, although A. alternata and A. arborescens strains were slightly more aggressive than A. mali morpho-species strains. This paper reports new insights on mycotoxin profiles, genetic variability, and pathogenicity of Alternaria species on tomatoes.Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin that can cause antifeeding and vomiting in animals. However, the mechanism of DON inducing anorexia is complicated. Studies have shown that intestinal hormones play a significant part in the anorexia caused by DON. We adopted the "modeling of acute antifeeding in mice" as the basic experimental model, and used two methods of gavage and intraperitoneal injection to explore the effect of intestinal hormones on the antifeedant response induced by DON in mice. We found that 1 and 2.5 mg/kg·bw of DON can acutely induce anorexia and increase the plasma intestinal hormones CCK, PYY, GIP, and GLP-1 in mice within 3 h. Direct injection of exogenous intestinal hormones CCK, PYY, GIP, and GLP-1 can trigger anorexia behavior in mice. Furthermore, the PYY receptor antagonist JNJ-31020028, GLP-1 receptor antagonist Exendin(9-39), CCK receptor antagonist Proglumide, GIP receptor antagonist GIP(3-30)NH2 attenuated both intestinal hormone and DON-induced anorectic responses.

Autoři článku: Churchillsteele5536 (Roche McMillan)