Choimueller5597

Z Iurium Wiki

Biorefineries provide a platform for different industries to produce multiple bio-products enhancing the economic value of the system. The production of these biorefineries has led to an increase in the generation of biowaste. To minimize the risk of environmental pollution, numerous studies have focused on a variety of strategies to mitigate these concerns reflected in the vast amount of literature written on this topic. This paper aims to systematically analyze and review the enormous body of scientific literature in the biowaste and biorefinery field for establishing an understanding and providing a direction for future works. A bibliometric analysis is first performed using the CorTexT Manager platform on a corpus of 1488 articles written on the topic of biowaste. Popular and emerging topics are determined using a terms extraction algorithm. A contingency matrix is then created to study the correlation of scientific journals and key topics from this field. Then, the connection and evolution of these terms were analyzed using network mapping, to determine relationships among key terms and analyze notable trends in this research field. Finally, a critical review of articles was presented across three main categories of biowaste management such as mitigation, sustainable utilization, and cleaner disposal from the perspective of the biorefinery concept. Operational and technological challenges are identified for the integration of anaerobic digestion in biorefineries, especially in developing nations. Moreover, logistical challenges in the biorefinery supply-chain are established based on the economics and collection aspect of handling biowaste.The removal of halogenated dye and sensing of pharmaceutical products in the water bodies with quick purification time is of high need due to the scarcity of drinking water. The present work reported on the preparation of graphitic carbon nitride (g-C3N4) for quick time water contaminant adsorption, followed by synthesizing silver nanoparticles decorated graphitic carbon nitride for pharmaceutical product sensing using in-situ SERS technique. The prepared graphitic carbon nitride is used to study the adsorption behavior of water contaminants at room temperature, in the presence of methylene blue (MB) as an adsorbate model. The water-soluble graphitic carbon nitride, even at low concentration, possesses an excellent ability to adsorb halogenated organic dye. As a result, the dyes are found to adsorb within ∼5s even without any additional physical or chemical activation. From the UV-Vis absorption investigations, it has been perceived that in the presence of graphitic carbon nitride (g-C3N4) the dye adsorption efficacy is observed nearly 80% with the well fitted linearly of R2 = 0.9731. Effective in-situ surface-enhanced Raman scattering (SERS) studies for Ag nanoparticles decorated graphitic carbon nitride has been carried out and the obtained result shows good sensing performance of the material towards acetaminophen drug. This method opens the possibility of the Nobel metal decorated graphitic carbon nitride for real-time sensing of SERS-based drug products along with the development of high-performance sensing of the target analyte in the future.Complex air pollutant sources and distinct meteorological conditions resulted in unique wintertime haze pollution in the Harbin-Changchun (HC) metropolitan area, China's only national-level city cluster located in the severe cold climate region. In this study, field observation and air quality modeling were combined to investigate fine particulate matter (PM2.5) pollution during a six-month long heating season in HC's central city (Harbin). The model significantly underpredicted PM2.5 and organic carbon (by up to ∼230 μg/m3 and 110 μgC/m3, respectively, in terms of daily average) when levoglucosan concentrations were above 0.5 μg/m3. Based on a synthesis of levoglucosan concentrations and fire counts, the large gaps were attributed to underestimation of open burning emissions by the model. However, the model tended to overpredict elemental carbon (more significantly at higher NO2), likely pointing to an overestimation of vehicle emissions. With increasing levoglucosan, the difference between observed and simulated nitrate (nitrateobs ‒ nitratemod, i.e., Δnitrate) showed a transition from negative to positive values. The positive Δnitrate were attributed to underprediction of the open-burning related nitrate, whereas the negative Δnitrate were likely caused by overprediction of nitrate from other sources (presumably vehicle emissions). The dependence of Δnitrate on levoglucosan indicated that with stronger impact of open burning, the overprediction effect was gradually offset and finally overwhelmed. Influence of open burning on sulfate formation was evident as well, but less apparent compared to nitrate. This study illustrates how the uncertainties in open burning emissions will influence PM2.5 simulation, on not only primary components but also secondary species.Microplastics are emerging contaminants and widely distributed in the environment. They are considered as a vector of numerous organic pollutants including antibiotics in aquatic environments and thereby influence their distribution and transport behaviors. However, the effects of microplastics on the environmental behavior of antibiotics in soils remain largely unclear. In this paper, the influence of polyamide (PA) microplastics on sorption and transport of the selected antibiotic [oxytetracycline (OTC)] in a sandy loamy soil was studied by performing batch and column experiments. Results show that PA microplastics increase the pH of reaction systems, which contributes to OTC sorption onto the tested soils. However, altering pH is not the key influencing mechanism because the overall sorption capacity decreases slightly after adding PA microplastics, which can be attributed to the dilution effect. Reduction of OTC sorption by adding microplastics promotes the migration of OTC in the tested soil, which could be demonstrated by the results of column experiments that the breakthrough of OTC occurs earlier with an increasing content of PA microplastics. According to the fitting parameters of HYDRUS-1D model, PA microplastics can affect the transport of OTC by altering the soil pore structure and dispersion coefficient. These results provide new insight into the interaction between microplastics and organic pollutants in soil environments.Nitrogen dioxide (NO2) is one of the most important air pollutants that highly affect the formation of secondary fine particles and tropospheric ozone. In this study based on hourly NO2 observations from June 2014 to May 2019 and a regional air quality model (WRF-CMAQ), we comprehensively analyzed the spatiotemporal variations of NO2 concentrations throughout China and in 12 urban agglomerations (UAs) and quantitatively showed the anthropogenic and meteorological factors controlling the interannual variations (IAVs). RMC-6236 The ground observations and tropospheric columns show that high NO2 concentrations are predominantly concentrated in UAs such as Beijing-Tianjin-Hebei (BTH), the Shandong Peninsula (SP), the Central Plain (CP), Central Shaanxi (CS), and the Yangtze River Delta (YRD). For different UAs, the NO2 IAVs are different. The NO2 increased first and then decreased in 2016 or 2017 in BTH, YRD, CS, and Cheng-Yu, and decreased from 2014 to 2019 in Harbin-Changchun, CP, SP, Northern Slope of Tianshan Mountain, and Beibu-Gulf, while increased slightly in the Pearl River Delta (PRD) and Hohhot-Baotou-Erdos-Yulin (HBEY). The NO2 IAVs were primarily dominated by emission changes. The net wintertime decreases of NO2 in BTH, Yangtze River Middle-Reach, and PRD were mostly contributed by emission reductions from 2014 to 2018, and the significant increase in the wintertime in HBEY was also dominated by emission changes (93%). Weather conditions also have an important effect on the NO2 IAVS. In BTH and HBEY, the increases of NO2 in winter of 2016 are mainly attributed to the unfavorable weather conditions and for the significant decreases in the winter of 2017, the favorable weather conditions also play a very important role. This study provides a basic understanding on the current situation of NO2 pollution and are helpful for policymakers as well as those interested in the study of tropospheric ozone changes in China and downwind areas.Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources. However, these techniques may lead to ambiguous results and fail to identify the seepage sources, especially when the area is urbanized/paved, and groundwater is already contaminated with other leakage sources that have similar chemical compounds. In the present study, a novel and multidisciplinary approach were adopted that includes satellite-based Land Surface Temperature (LST) observations, field-based Electrical Resistivity Tomography (ERT), continuous Soil Electrical Conductivity (SEC) and Volumetric Soil Moisture (VSM%) measurements along with groundwater levels monitoring to identify the sources and to control the seepage. The integrated results identified that the locations with the Standard Thermal Anomaly (STA) in the range of -0.5 to -1 °C, VSM% >50%, SEC > 1.5 mS/cm, bulk resistivity less then 12 Ω m with shallow groundwater levels less then 3 m below ground level (bgl) are potentially contaminated perennial seepage sources. Impermeable sheet piles have been installed across the groundwater flow direction to control the seepage up to 1.5 m bgl, where groundwater frequently intercepts land surface. The quantity of dry season groundwater seepage has been declined by 79.2% after these interventions, which in turn minimized the treatment cost of 1,96,283 USD/year and improved the downstream ecosystem.The development of an eco-friendly and reliable process for the production of nanomaterials is essential to overcome the toxicity and exorbitant cost of conventional methods. As such, a facile and green synthesis method is introduced for the preparation of lignin mediated silver nanoparticles (L-Ag NPs). This is produced by reducing Ag precursors using lignin biopolymers which are formulated by pulsed laser irradiation and an ultrasonication process. Lignin operates as both a reducing and stabilizing agent. The various analytical techniques of ultraviolet-visible spectroscopy, transmission electron microscope and X-ray diffractometer studies were employed to verify the formation of non-aggregated spherical L-Ag NPs with an average size as small as 7-8 nm. The selective sensing capability of the synthesized L-Ag NPs was examined for the detection of hydrogen peroxide and mercury ions in an aqueous environment. Furthermore, the superior catalytic performance of L-Ag NPs was demonstrated by the rapid conversion of toxic 4-nitrophenol and nitrobenzene as targeted pollutants to the corresponding amino compounds. A plausible catalytic reduction mechanism for the removal of toxic nitro-organic pollutants over L-Ag NPs is proposed. This research coincides with existing studies and affirms that L-Ag NPs are an effective sensor that be applied as a catalytic material within environmental remediation and also alternative biomedical applications.

Autoři článku: Choimueller5597 (Barefoot Bradford)