Cherrypilgaard6581
This hollow fiber membrane shows a high evaporation rate of 1.64 kg m-2 h-1 due to multiangle evaporation and also demonstrates excellent salt-resisting performance for high-salinity brine treatment (20 wt%). The study demonstrates the effect of the horizontal channel-like framework for high evaporation performance and salt resistance, providing new insights into the solar evaporator design for seawater desalination and wastewater treatment.Smart fluorescent materials that respond to external stimuli have received more and more attention because of their excellent optical properties in the field of anti-counterfeiting, information security and fluorescence sensing. Herein, we reported a new stimulus-responsive material, [Zn4(TCPE)(HTCPE)(DMA)3(OH)(H2O)2]·2DMA·2H2On (HPU-21), which showed a series of fluorescence changes under the influence of temperature, pressure and solvents. Combined with the temperature-dependent fluorescence, 1H NMR and 13C NMR spectra, TEM and powder X-ray diffraction results, the fluorescence transformation was mainly attributed to the changes in the twisted ethyl core and the multiple rotational phenyl rings, as well as the aggregation degree. Based on these findings, we designed an adjustable formaldehyde probe with excellent performance. The detection limit of formaldehyde in aqueous solutions is calculated as 35 ppb, which is much lower than the concentration that is harmful to health (20 ppm). The extremely high sensitivity to formaldehyde makes it have potential application prospects in practical formaldehyde detection.The investigations of the crystal structure, magnetic and electronic properties of Co3BO5 at high temperatures were carried out using powder X-ray diffraction, magnetic susceptibility, electrical resistivity, and thermopower measurements. The orthorhombic symmetry (Sp.gr. Pbam) was observed at 300 K and no evidence of structural phase transitions was found up to 1000 K. The compound shows a strong anisotropy of the thermal expansion. A large negative thermal expansion along the a-axis is observed over a wide temperature range (T = 300-600 K) with αa = -35 M K-1 at T = 500 K with simultaneous expansion along the b- and c-axes with αb = 70 M K-1 and αc = 110 M K-1, respectively. The mechanisms of thermal expansion are explored by structural analysis. The activation energy of the conductivity decreases significantly above 700 K. Electronic transport was found to be a dominant conduction mechanism in the entire temperature range. The correlations between the thermal expansion, electrical resistivity, and effective magnetic moment were revealed and attributed to the evolution of the spin state of Co3+ ions towards the spin crossover and gradual charge-ordering transition.Cross-plane electrical and thermal transport in thin films of a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) stabilized with trifluoromethanesulfonate (OTf) is investigated in this study. We explore their electrical properties by conductive atomic force microscopy (C-AFM), which reveals the presence of highly conductive nano-domains. Thermal conductivity in the cross-plane direction is measured by null-point scanning thermal microscopy (NP-SThM). PEDOTOTf indeed demonstrates a non-negligible electronic contribution to the thermal transport. We further investigate the correlation between electrical and thermal conductivity by applying post-treatment chemical reduction (de-doping) to lower charge carrier concentration and hence, electrical conductivity and acid treatment (over-doping) to increase the latter. From our measurements, we find a vibrational thermal conductivity of 0.34 ± 0.04 W m-1 K-1. see more From the linear dependence or the electronic contribution of thermal conductivity vs. the electronic conductivity (Wiedemann-Franz law), we infer a Lorenz number 6 times larger than the classical Sommerfeld value as also observed in many organic materials for in-plane thermal transport. By applying the recently proposed molecular Wiedemann-Franz law, we deduced a reorganization energy of 0.53 ± 0.06 eV.GC × GC investigations are well known to generate a substantial amount of information-rich and structurally complex data, requiring advanced data processing strategies like chemometrics. Many workflows are available for data handling and processing, such as the peak-table and pixel-based approaches. The goal of this work is to present a solution based on method development to solve the missing pixel problem that may be encountered in experiments performed with GC and GC × GC coupled to the Fourier transform orbital ion trap (FT-Orbitrap) mass analyzer. Data input is vital for pixel-based chemometric analyses, as some post-processing solutions may lead to significant loss of chemical information in the data set. Hence, a key requisite is that the chemical information is consistently indexed in the data arrays for proper pixel-based data handling and analysis. In this study, we carefully evaluated the ion management parameters to preserve the intrinsic structure and information of the data arrays of the GC × GC-FT-Orbitrap for future pixel-oriented chemometric analysis. The most acceptable conditions yielded acquisition rates up to 42.6 spectra per s, while a routine setting of 24.7 Hz was successfully employed in analyses of different petroleum fractions, producing both consistent tensor sizes and acceptable peak reconstructions. A data acquisition rate of 24.7 spectra per s and a mass resolving power of 15 000 allowed the resolution of a mass split of only 0.004 Da - which is an interesting configuration for challenging applications in petroleomics. Using such advanced settings, the missing pixel problem was reduced from up to 30% to much less than 0.04% of the data array dimension. Thus, the proposed configuration can be employed in studies that require pixel-oriented multivariate data analysis.The development of a responsive fluorescent probe for the detection of a particular biomolecule in a specific site at the desired moment is important in the fields of bioanalysis and imaging, molecular biology and biomedical research. In this work, we report the development of a remote-light activatable nanoprobe for the fluorescence detection of sulphite in pure aqueous solution and its imaging applications in living cells. The nanoprobe, Poly-Cm-SP, is fabricated simply by wrapping photochromic molecules (Cm-SP) into a polymer nanoparticle. Upon alternate UV/Vis light irradiation for several seconds, the Poly-Cm-SP nanoprobe exhibits red/blue fluorescence switch due to the inactive/active FRET processes from coumarins to the SP/MR isomers of the photochromic molecule. In the presence of sulphite, the specific reaction of sulphite with the electron deficit "CC" bond of the MR isomer occurs, resulting in an inefficient FRET process and thus exhibiting a constant "ON" blue channel fluorescence signal. After UV-light irradiation, the formation of activated Poly-Cm-MRin situ thus enables the detection of sulphite through recording the ratiometric changes of fluorescence signals at both blue and red channels. The Poly-Cm-SP nanoprobe possesses excellent biocompatibility and lysosome distribution capability, allowing it to be used for photochromic imaging and sulphite detection in the lysosomes of living macrophage cells. This work thus offers a new remote-light activatable nanoprobe for the detection and imaging of sulphite in biological systems.Curcumin as a hydrophobic polyphenol has great potential for tumor therapy, yet its rapid degradation and hydrophobicity severely impair its therapeutic effect in the clinic. Herein, we report a novel strategy for the formation of curcumin doped zeolitic imidazolate framework nanoparticles (Cur-ZIF NPs) by zinc ion driven simultaneous coordination of curcumin and 2-methylimidazole. The resultant Cur-ZIF NPs with a uniform nanosize exhibit favorable stability and dispersibility in water, as well as high drug-loading capacities. The pH and redox sensitivity of ZIF NPs enable the controlled release of curcumin in vivo. Moreover, Cur-ZIF NPs serve as nanocarriers that can load the toll-like-receptor-7 agonist (imiquimod, IQ) and be coated by homotypic cancer cell membranes to enhance tumor-targeted delivery. This study provides an attractive nanoplatform to effectively utilize curcumin and integrate multiple therapeutic modalities into a single system for tumor treatment.Encapsulation of a metallofullerene single-molecule magnet, Dy2ScN@C80, into single-wall carbon nanotubes (SWCNTs) accelerates magnetic relaxation processes. In contrast, encapsulation of DySc2N@C80 suppresses them. The effects of the encapsulation are discussed in terms of intermolecular magnetic interactions and charge transfer among metallofullerenes and SWCNTs.We herein report the discovery of inorganic toroidal and capsule titanium oxysulfate clusters by ionothermal synthesis. The ratio between geometrically different anions (tetrahedral SO42-vs. pseudo-tetrahedral PO33-) shows an interesting influence on cluster structure formation.Superamphiphobic surfaces have attracted widespread attention because of their great potential for applications in biotechnology, optoelectronics, water/oil separation, etc. Re-entrant curvatures are widely reported to provide a metastable Cassie state for superamphiphobicity. For high contact angles, re-entrant surfaces with a small area fraction (f) are designed according to the Cassie equation. However, this will make the surfaces take high local pressures under a mechanical force and thus suffer from frangibility. Robustness and high repellency are seemingly mutually exclusive. Herein, contrary to Cassie's equation, we show that high contact angles (>150°) with a large f (69.4%) of water and oleic acid can be achieved by utilizing a large upward Laplace pressure with narrow and parallel channel geometries. We deeply studied the effect of Laplace pressure on superamphiphobicity and suppose that the larger upward Laplace pressure stops the droplet earlier and pins the contact line at a higher position, providing a higher contact angle. The similar effect of viscous force well supports our explanation. These findings enable us to obtain robust and durable superamphiphobic surfaces with an enlarged area fraction and simple re-entrant microstructures. Our work may open up design strategies for robust superamphiphobic surfaces with practical applications.We report on the formation of a high-order commensurate (HOC) structure of 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) molecules on the highly corrugated Cu(110)-(2 × 1)O surface. Scanning tunnelling microscopy shows that the DHTAP molecules form a periodic uniaxial arrangement in which groups of seven molecules are distributed over exactly nine substrate lattice spacings along the [1̄10] direction. DFT-calculations reveal that this peculiar arrangement is associated with different tilting of the seven DHTAP molecules within the quasi one-dimensional HOC unit cell. The orientational degree of freedom thus adds a new parameter, which can efficiently stabilize complex molecular structures on corrugated surfaces.The reaction mechanism of direct CO2 hydrogenation to methanol is investigated in detail on Pd (111), (100) and (110) surfaces using density functional theory (DFT), supporting investigations into emergent Pd-based catalysts. Hydrogen adsorption and surface mobility are firstly considered, with high-coordination surface sites having the largest adsorption energy and being connected by diffusion channels with low energy barriers. Surface chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) whilst slightly exothermic on Pd (100) and (110), with adsorption enthalpies of 0.09, -0.09 and -0.19 eV, respectively; the low stability of CO2δ- on the Pd (111) surface is attributed to negative charge accumulating on the surface Pd atoms that interact directly with the CO2δ- adsorbate. Detailed consideration for sequential hydrogenation of the CO2 shows that HCOOH hydrogenation to H2COOH would be the rate determining step in the conversion to methanol, for all surfaces, with activation barriers of 1.