Chapmanbachmann2056
Phylogenetic analysis of the new isolate along with previously known regional isolates revealed that the new isolate was related to genotype II strains. Additionally, sequence analysis indicated a distinct genetic lineage of the new isolate, which was related to some of the lineages identified in previous outbreaks in the Middle East. CONCLUSION The current study offers essential information on the epidemiology, characteristics and diagnosis of NDV for disease control in Iraq. The isolate was found to belong to genotype II and possess an avirulent fusion protein motif. © 2020 The Authors. Veterinary Medicine and Science Published by John Wiley & Sons Ltd.Liver fibrosis, a consequence of unhealthy modern lifestyles, has a growing impact on human health, particularly in developed countries. Here, we have explored the anti-fibrotic effects of propylene glycol alginate sodium sulphate (PSS), a natural extract from brown algae, in fibrotic mice and cell models. Thus, we established bile duct ligature and carbon tetrachloride mouse models and LX-2 cell models with or without PSS treatment. Liver pathological sections and the relevant indicators in serum and liver tissues were examined. PSS prevented hepatic injury and fibrosis to a significant extent, and induced up-regulation of matrix metalloproteinase-2 and down-regulation of tissue inhibitor of metalloproteinase-1 through suppressing the transforming growth factor β1 (TGF-β1)/Smad pathway. PSS additionally exerted an anti-autophagy effect through suppressing the Janus kinase (JAK) 2/transducer and activator of transcription 3 (STAT3) pathway. In conclusion, PSS prevents hepatic fibrosis by suppressing inflammation, promoting extracellular matrix (ECM) decomposition and inactivating hepatic stellate cells through mechanisms involving the TGF-β1/Smad2/3 and JAK2/STAT3 pathways in vivo and in vitro. © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.BACKGROUND To identify the performance of contrast-enhanced spectral mammography (CESM) and magnetic resonance imaging (MRI) for breast cancer diagnosis by pooling the open published data. selleckchem METHODS A systematic review of studies relevant to CESM and MRI in the diagnosis of breast cancer were screened in the electronic databases of Pubmed, EMBASE, the Cochrane Library, Web of Science, Google scholar and CNKI. The methodical quality of the included publications was evaluated by the quality assessment of diagnostic accuracy studies-2 (QUADAS-2). The diagnostic sensitivity, specificity and area under the ROC curve (AUC) were pooled and the true positive (TP), false positive (FP), false negative (FN) and true negative (TN) of the original studies were calculated. RESULTS A total of 13 diagnostic publications were identified and included in the meta-analysis. Of those included, five were retrospective studies and the remaining eight were prospective work. The combined data indicating the pooled sensitivity and specificity of CESM and MRI were 0.97 (95% CI 0.95-0.98), 0.66 (95% CI 0.59-0.71), 0.97 (95% CI 0.95-0.98),and 0.52 (95% CI 0.46-0.58), respectively. The pooled +LR and -LR for CESM were 2.70 (95% CI 1.57-4.65), 0.06 (95% CI 0.04-0.09), and 2.01 (95% CI 1.78-2.26), 0.08 (95% CI 0.05-0.11) for MRI, respectively. For the diagnostic odds ratio (DOR), the pooled results of CESM and MRI were 60.15 (95% CI 24.72-146.37) and 31.34 (95% CI 19.61-50.08), respectively. The AUC of the symmetric receiver operating characteristic curve (SROC) was 0.9794 and 0.9157 for CESM and MRI, respectively, calculated using the Moses model in the diagnosis of breast cancer. CONCLUSIONS Both CESM and MRI are effective methods for the detection of breast cancer with high diagnostic sensitivity. The diagnostic performance of CESM appears to be more effective than MRI. © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.Transforming petrochemical processes into bioprocesses has become an important goal of sustainable development. The chemical synthesis of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) is expensive and environmentally unfavourable. The study aims to investigate a whole-cell biocatalyst for efficient biotransformation of HMF to FDCA. For the first time, a genetically engineered Pseudomonas putida S12 strain expressing 5-hydroxymethylfurfural oxidase (HMFO) was developed for the biocatalytic conversion of HMF to FDCA. This whole-cell biocatalyst produced 35.7 mM FDCA from 50 mM HMF in 24 h without notable inhibition. However, when the initial HMF concentration was elevated to 100 mM, remarkable inhibition on FDCA production was observed, resulting in a reduction of FDCA yield to 42%. We solve this substrate inhibition difficulty by increasing the inoculum density. Subsequently, we used a fed-batch strategy by maintaining low HMF concentration in the culture to maximize the final FDCA titre. Using this approach, 545 mM of FDCA was accumulatively produced after 72 hs, which is the highest production rate per unit mass of cells to the best of our knowledge. © 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.BACKGROUND Sphingosine 1-phosphate (S1P), a bioactive lipid, has been shown to mediate cancer processes. Therefore, accurate qualitative and quantitative determination is essential. The current assay method is still cumbersome to be of practical use worldwide and the aim of this study was therefore to develop a fast, accurate, precise and efficient LC-MS/MS method for targeted analyses of S1P in serum samples. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an established method used for monitoring and analyzing S1P levels in serum. We determined the level of serum S1P in 256 patients with lung cancer and 36 healthy donors, and used Spearman';s rank correlation analysis to evaluate the difference in serum S1P levels between radiotherapy and nonradiotherapy patients. RESULTS Standard curves were linear over ranges of 25-600 ng/mL for S1P with correlation coefficient (r2 ) greater than 0.9996. The lower limit of quantifications (LLOQs) was 25 ng/mL. The intra- and interbatch precisions and accuracy was less than 10% for S1P.