Chambershenningsen7982
A 2D perovskite incorporating an amine moiety with a carboxy group exhibited orientation changes as the amount of DMSO additive varied. The degree of perpendicular orientation was increased by optimizing the amount of DMSO additive, while using the bar-coating method. Moreover, film thickness and the ratio of perpendicular orientation exhibited a positive correlation.[This corrects the article DOI 10.1371/journal.pone.0118261.].
Prevalence of Cesarean section (C-section) is unequally distributed. Since both extremely low and high levels of C-section can not only cause adverse birth outcomes but also impose a double burden of inefficiency within maternal health care, it is important to monitor the dynamics of key factors associated with the use of C-section.
To examine the association between type of provider and C-section in India in three-time points 1999, 2006, and 2016, and also to assess whether this association differed across maternal education and wealth level.
Data were from three waves of cross-sectional and nationally representative Indian National Health Family Survey Wave II (1999), III (2006), and IV (2016). Target population is women aged 15 and 49 who had an institutional delivery for the most recent live birth during the three or five years preceding the survey (depending on the survey round). Multivariate logistic regression models adjusting for state cluster effect were performed to determine the association bt 15 years and was higher in lower SES women. The behavior of providers needs to be closely monitored to ensure that C-section is performed only when medically justified.
Our results suggest that disparity in C-section between private and public providers has increased over the last 15 years and was higher in lower SES women. The behavior of providers needs to be closely monitored to ensure that C-section is performed only when medically justified.The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid. We confirmed our Tn-seq findings using a novel CRISPR inhibition (CRISPRi) gene expression knockdown system. This analysis showed that one gene, which encodes a GntR-class transcription factor that we named MrvR, conferred a significant fitness benefit to GBS in amniotic fluid. We generated an isogenic targeted deletion of the mrvR gene, which had a growth defect in amniotic fluid relative to the wild type parent strain. The mrvR deletion strain also showed a significant biofilm defect in vitro. Subsequent in vivo studies showed that while the mutant was able to cause persistent murine vaginal colonization, pregnant mice colonized with the mrvR deletion strain did not develop preterm labor despite consistent GBS invasion of the uterus and the fetoplacental units. In contrast, pregnant mice colonized with wild type GBS consistently deliver prematurely. In a sepsis model the mrvR deletion strain showed significantly decreased lethality. PS-1145 in vivo In order to better understand the mechanism by which this newly identified transcription factor controls GBS virulence, we performed RNA-seq on wild type and mrvR deletion GBS strains, which revealed that the transcription factor affects expression of a wide range of genes across the GBS chromosome. Nucleotide biosynthesis and salvage pathways were highly represented among the set of differentially expressed genes, suggesting that MrvR may be involved in regulating nucleotide availability.[This corrects the article DOI 10.1371/journal.pone.0238085.].The negative regulation of antiviral immune responses is essential for the host to maintain homeostasis. Jumonji domain-containing protein 6 (JMJD6) was previously identified with a number of functions during RNA virus infection. Upon viral RNA recognition, retinoic acid-inducible gene-I-like receptors (RLRs) physically interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type-I interferon (IFN-I) production. Here, JMJD6 was demonstrated to reduce type-I interferon (IFN-I) production in response to cytosolic poly (IC) and RNA virus infections, including Sendai virus (SeV) and Vesicular stomatitis virus (VSV). Genetic inactivation of JMJD6 enhanced IFN-I production and impaired viral replication. Our unbiased proteomic screen demonstrated JMJD6 contributes to IRF3 K48 ubiquitination degradation in an RNF5-dependent manner. Mice with gene deletion of JMJD6 through piggyBac transposon-mediated gene transfer showed increased VSV-triggered IFN-I production and reduced susceptibility to the virus.