Cassidygilmore7274
The on chip coculture of the liver and the proximal tubulus equivalents showed its potential as an effective and translational tool for repeated dose multi-drug toxicity screening in the preclinical stage of drug development.Methyl-CpG-binding protein 2 (MeCP2) facilitates the carcinogenesis and progression of several types of cancer. However, its role in breast cancer and the relevant molecular mechanism remain largely unclear. In this study, analysis of the Cancer Genome Atlas (TCGA) data that MeCP2 expression was significantly upregulated in breast cancer tissues, and high MeCP2 expression was correlated with poor overall survival. Knockdown of MeCP2 inhibited breast cancer cell proliferation and G1-S cell cycle transition and migration as well as induced cell apoptosis in vitro. Moreover, MeCP2 knockdown suppressed cancer cell growth in vivo. Investigation of the molecular mechanism showed that MeCP2 repressed RPL11 and RPL5 transcription by binding to their promoter regions. TCGA data revealed significantly lower RPL11 and RPL5 expression in breast cancer tissues; additionally, overexpression of RPL11/RPL5 significantly suppressed breast cancer cell proliferation and G1-S cell cycle transition and induced apoptosis in vitro. Furthermore, RPL11 and RPL5 suppressed ubiquitination-mediated P53 degradation through direct binding to MDM2. This study demonstrates that MeCP2 promotes breast cancer cell proliferation and inhibits apoptosis through suppressing RPL11 and RPL5 transcription by binding to their promoter regions.The antiandrogen enzalutamide (Enz) has improved survival in castration resistant prostate cancer (CRPC) patients. However, most patients eventually develop Enz resistance that may involve inducing the androgen receptor (AR) splicing variant 7 (ARv7). Here we report that high expression of monoamine oxidase-A (MAO-A) is associated with positive ARv7 detection in CRPC patients following Enz treatment. Targeting MAO-A with phenelzine or clorgyline, the FDA-approved drugs for antidepression, resensitize the Enz resistant (EnzR) cells to Enz treatment and further suppress EnzR cell growth in vitro and in vivo. Our findings suggest that Enz-increased ARv7 expression can transcriptionally enhance MAO-A expression resulting in Enz resistance via altering the hypoxia HIF-1α signals. Together, our results show that targeting the Enz/ARv7/MAO-A signaling with the antidepressants phenelzine or clorgyline can restore Enz sensitivity to suppress EnzR cell growth, which may indicate that these antidepression drugs can overcome the Enz resistance to further suppress the EnzR CRPC.Background Limited data exist on the association of obesity with both hospitalization and mortality in patients with heart failure with preserved ejection fraction (HFpEF), especially in the real-world ambulatory setting. We hypothesized that increasing body-mass index (BMI) in ambulatory heart failure with preserved ejection fraction would have a protective effect on these patients leading to decreased mortality and hospitalizations. Methods We studied the relationship between BMI and the time to all-cause mortality, time to heart failure (HF) hospitalization, and time to all-cause hospitalization over a 2-year follow-up in a national cohort of 2501 ambulatory HFpEF patients at 153 Veterans Affairs medical centers. Results Compared with normal BMI, overweight (HR 0.72; 95% CI 0.57-0.91), obesity class I (HR 0.59; 95% CI 0.45-0.77), obesity class II (HR 0.56; 95% CI 0.40-0.77), and obesity class III (HR 0.53; 95% CI 0.36-0.77) were associated with improved survival after adjustment for demographics and comorbidities. In contrast, the time to HF hospitalization showed an inverse relationship, with shorter time to HF hospitalization with increasing BMI compared with normal BMI; overweight (adjusted HR 1.30; 95% CI 0.88-1.90), obesity class I (HR 1.57; 95% CI 1.05-2.34), obesity class II (HR 1.79; 95% CI 1.15-2.78), and obesity class III (HR 1.96; 95% CI 1.23-3.12). However, time to first all-cause hospitalization was not significantly different by BMI groups. PF-02341066 order Conclusions In a large, national ambulatory HFpEF cohort, despite the presence of the obesity paradox with respect to survival, increasing BMI was independently associated with an increased risk of HF hospitalization and similar risk of all-cause hospitalization. Future longer-term prospective trials evaluating the safety and efficacy of weight loss on morbidity and mortality, in patients with severe obesity and HFpEF are needed.Girder design for suspension bridges has remained largely unchanged for the past 60 years. However, for future super-long bridges, aiming at record-breaking spans beyond 3 km, the girder weight is a limiting factor. Here we report on a design concept, inspired by computational morphogenesis procedures, demonstrating possible weight savings in excess of 28 percent while maintaining manufacturability. link2 Although morphogenesis procedures are rarely used in civil engineering, often due to complicated designs, we demonstrate that even a crude extraction of the main features of the optimized design, followed by a simple parametric optimization, results in hitherto unseen weight reductions. We expect that further studies of the proposed design, as well as applications to other structures, will lead to even greater weight savings and reductions in carbon footprint in a construction industry, currently responsible for 39 percent of the world's CO2 emissions.We profiled gene expression signatures to distinguish rheumatoid arthritis (RA) from non-inflammatory arthralgia (NIA), self-limiting arthritis (SLA), and undifferentiated arthritis (UA) as compared to healthy controls as novel potential biomarkers for therapeutic responsiveness. link3 Global gene expression profiles of PBMCs from 43 drug-naïve patients presenting with joint symptoms were evaluated and differentially expressed genes identified by comparative analysis with 24 healthy volunteers. Patients were assessed at presentation with follow up at 6 and 12 months. Gene ontology and network pathway analysis were performed using DAVID Bioinformatics Resources v6.7. Gene expression profiles were also determined after disease-modifying anti-rheumatic drug (DMARD) treatment in the inflammatory arthritis groups (i.e. RA and UA) and confirmed by qRT-PCR. Receiver operating characteristic (ROC) curves analysis and Area Under the Curve (AUC) estimation were performed to assess the diagnostic value of candidate gene expreseful marker of disease activity in UA.Here we investigated the roles of Rab27a, a player in exosome release, and TRAF3IP2, an inflammatory mediator, in development and metastasis of breast cancer (BC) in vivo. Knockdown (KD) of Rab27a (MDAKDRab27a) or TRAF3IP2 (MDAKDTRAF3IP2) in triple negative MDA-MB231 cells reduced tumor growth by 70-97% compared to wild-type tumors (MDAw). While metastasis was detected in MDAw-injected animals, none was detected in MDAKDRab27a- or MDAKDTRAF3IP2-injected animals. Interestingly, micrometastasis was detected only in the MDAKDRab27a-injected group. In addition to inhibiting tumor growth and metastasis, silencing TRAF3IP2 disrupted inter-cellular inflammatory mediator-mediated communication with mesenchymal stem cells (MSCs) injected into contralateral mammary gland, evidenced by the lack of tumor growth at MSC-injected site. Of translational significance, treatment of pre-formed MDAw-tumors with a lentiviral-TRAF3IP2-shRNA not only regressed their size, but also prevented metastasis. These results demonstrate that while silencing Rab27a and TRAF3IP2 each inhibited tumor growth and metastasis, silencing TRAF3IP2 is more effective; targeting TRAF3IP2 inhibited tumor formation, regressed preformed tumors, and prevented both macro- and micrometastasis. Silencing TRAF3IP2 also blocked interaction between tumor cells and MSCs injected into the contralateral gland, as evidenced by the lack of tumor formation on MSCs injected site. These results identify TRAF3IP2 as a novel therapeutic target in BC.New resonant emission of dispersive waves by oscillating solitary structures in optical fiber cavities is considered analytically and numerically. The pulse propagation is described in the framework of the Lugiato-Lefever equation when a Hopf-bifurcation can result in the formation of oscillating dissipative solitons. The resonance condition for the radiation of the dissipative oscillating solitons is derived and it is demonstrated that the predicted resonances match the spectral lines observed in numerical simulations perfectly. The complex recoil of the radiation on the soliton dynamics is discussed. The reported effect can have importance for the generation of frequency combs in nonlinear microring resonators.Genetic and nongenetic factors may contribute to lamotrigine (LTG) plasma concentration variability among patients. We simultaneously investigated the association of UGT1A1, UGT1A4, UGT2B7, ABCB1, ABCG2, and SLC22A1 variants, as well as antiepileptic drug co-treatment, on LTG plasma concentration in 97 Mexican Mestizo (MM) patients with epilepsy. UGT1A4*1b was associated with lower LTG dose-corrected concentrations. Patients with the UGT2B7-161T allele were treated with 21.22% higher LTG daily dose than those with CC genotype. Two novel UGT1A4 variants (c.526A>T; p.Thr185= and c.496T>C; p.Ser166Leu) were identified in one patient. Patients treated with LTG + valproic acid (VPA) showed higher LTG plasma concentration than patients did on LTG monotherapy or LTG + inducer. Despite the numerous drug-metabolizing enzymes and transporter genetic variants analyzed, our results revealed that co-treatment with VPA was the most significant factor influencing LTG plasma concentration, followed by UGT1A4*1b, and that patients carrying UGT2B7 c.-161T required higher LTG daily doses. These data provide valuable information for the clinical use of LTG in MM patients with epilepsy.Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C β4 (PLCβ4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCβ4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCβ4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.Granulocyte recruitment to the pulmonary compartment is a hallmark of progressive tuberculosis (TB). This process is well-documented to promote immunopathology, but can also enhance the replication of the pathogen. Both the specific granulocytes responsible for increasing mycobacterial burden and the underlying mechanisms remain obscure. We report that the known immunomodulatory effects of these cells, such as suppression of protective T-cell responses, play a limited role in altering host control of mycobacterial replication in susceptible mice. Instead, we find that the adaptive immune response preferentially restricts the burden of bacteria within monocytes and macrophages compared to granulocytes. Specifically, mycobacteria within inflammatory lesions are preferentially found within long-lived granulocytes that express intermediate levels of the Ly6G marker and low levels of antimicrobial genes. These cells progressively accumulate in the lung and correlate with bacterial load and disease severity, and the ablation of Ly6G-expressing cells lowers mycobacterial burden.