Caspersenmccarty4466

Z Iurium Wiki

53). The design of this gradient structured fiber sponge opens a new way for the development of ideal sound-absorbing materials.Developing two-dimensional (2D) materials as anode materials have been proved a promising approach to significantly improve the charge storage performances of alkali metal ion. Herein, we investigate mono-layered VN2 as an anode material in Li, Na and K ion batteries. Firstly, the high stability of 2D-VN2 has been demonstrated via calculating the phonon spectra. 2D-VN2 is capable of delivering high capacities of 678.8, 339.4 and 1357.6 mAh g-1 in Li+, K+ and Na+ storage, respectively. In addition, the metallic properties and corresponding high electrical conductivity and low diffusion barriers of 201.1 meV for Li atoms, 34.7 meV for K atoms and 84.1 meV for Na atoms on VN2 surface, indicating good capacity and the superior rate performances of alkali metal atoms migration on VN2. The calculated average voltage of Li, Na and K are respectively 0.81 V, 0.29 V and 0.77 V, suggesting a promising voltage behavior compared with other 2D materials.Aqueous zinc-ion batteries (ZIBs) have been considered to be potential energy storage devices because of their cost-effectiveness and environmental friendliness. However, most of the cathode materials reported in ZIBs exhibit poor electrochemical performances like capacity fading during cycling and inferior performance at high current densities, which significantly hinder the further development of ZIBs. Here, we reported a novel three-dimensional hydrated vanadium pentoxide (V2O5·nH2O)/MXene composite via a simple one-step hydrothermal method. Owing to the unique structure and high electrical conductivity of MXene, V2O5·nH2O/Ti3C2Tx MXene shows a remarkable electrochemical performance with a reversible capacity of 323 mAh g-1 at 0.1 A g-1 and exceptional rate capability (262 mAh g-1 at 1 A g-1 and 225 mAh g-1 at 2 A g-1) when used as the cathode for aqueous ZIBs. This work offers a new insight into fabricating novel vanadium oxide-based cathode material for aqueous ZIBs.The efficient use of abundant renewable bamboo as high value-added decoration and building materials is of great significance for mitigating carbon dioxide emissions and maintaining sustainable development. The key challenge is to explore efficient and gentle methods to improve the undesirable surface properties of bamboo. Herein, a colorful and superhydrophobic bamboo is gently fabricated by a facile in-situ growth and conversion method based on metal-organic framework (for constructing micro-nano composite structures) and subsequent coating of sodium laurate (for reducing surface energy) at room temperature. The resulting sodium laurate-coated cobalt-nickel double hydroxide layer (CoNi-DH-La) is demonstrated as an efficient superhydrophobic layer to exhibit excellent chemical and mechanical stability. Impressively, the as-obtained CoNi-DH-La-coated bamboo sheet (BS-CoNi-DH-La) shows positive performances in terms of mildew resistance, flame retardancy, and self-cleaning. More importantly, this gentle method can endow bamboo with multiple unfading colors by changing the type of inorganic salts during the preparation process and display good potential for large-scale production.Potassium-ion batteries (PIBs) is one of the most promising alternatives for Lithium-ion batteries (LIBs) due to the low-cost and abundant potassium reserves. However, the electrochemical performances of PIBs were seriously hindered by the larger radius of potassium ions, resulting in a slow kinetic during the electrochemical reaction, especially in the PIB anodes. In the study, we propose FeS nanodots embedded S-doped porous carbon (FeS@SPC) synthesized by a simple self-template method for the storage of potassium-ions. The FeS nanodots with an average diameter of 5 nm are uniformly distributed in S-doped porous carbon nanosheets. When the FeS@SPC was used as the anode in PIBs, the unique structure of FeS@SPC can relieve the agglomeration and volume expansion of FeS effectively during the charge-discharge process. Even after 3000 cycles, the FeS nanodots are still uniformly embedded in porous carbon without agglomeration. Ascribed to the merits, the FeS@SPC exhibits a reversible capacity of 309 mAh g-1 at 0.1 A g-1 after 100 cycles and 232 mAh g-1 at 1 A g-1 after 3000 cycles. The excellent electrochemical performance of FeS@SPC is attributed to the synergistic effects of FeS nanodots and S-doped porous carbon, which facilitated the diffusion of electrolyte and accelerated the migration of potassium ions. Moreover, theoretical calculation results also suggest that the van der waals heterostructure of FeS@SPC displays higher adsorption energy for potassium ions than that of S-doped graphene, indicating the suitability of FeS@SPC for K storage.A two-stage method of hydrothermal carbonization and chemical activation technology was applied to prepare a novel, large surface area and rich-pore structure activation-hydrochar from sludge sewage and coconut shell due to its mild, low-cost, and well-developed merits. The pore-making mechanism of activation-hydrochar was discussed by FT-IR, XPS, SEM, TG, TG-MS, XRD, and BET characterization. These results illustrated that the first stage of hydrothermal carbonization achieved the rich-pore structure hydrochar via dehydration, decarboxylation, deamination, and rearrangement reactions. The subsequent KOH activation was conducive to the pore-forming process. Specifically, the pore structure of activation-hydrochar was ameliorated and abundant active adsorption sites were obtained by the modification. The adsorption properties of activation-hydrochar on Methylene Blue (MB) and Congo Red (CR) were systematically investigated, and the max adsorption capacities of those were obtained with 623.37 mg/g and 228.25 mg/g, respectively. The pseudo-second-order kinetics and Langmuir models were both fit to elucidate the adsorption process for both dyes. Thermodynamics revealed adsorption performance accompanied by the spontaneous and endothermic processes. Selleck Epacadostat In general, the research clearly indicated the synthesis route for activation-hydrochar, and its further adsorption performance, capacity, and mechanism on MB and CR. This research demonstrated that activation-hydrochar with the abundant surface area and rich-pore structure made it a candidate for the production of effective adsorption material. It is prospective to achieve the utilization of wastes and its further application in wastewater treatment.Recently, conjugated microporous polymers (CMPs) comprised of thiazolo[5,4-d]thiazole (TzTz) linkages have received much attention due to their excellent photoelectric properties. Herein, the polycondensation of dithiooxamide and benzyl aldehydes of C2, C3, and D2h symmetry afforded three TzTz-linked CMPs, namely TzTz-CMP-1, TzTz-CMP-2, and TzTz-CMP-3. Importantly, the porous and flexible characteristics of TzTz-linked CMPs enable the smooth selective aerobic oxidation of amines in ethanol (C2H5OH), a clean but redox-active solvent. All three TzTz-linked CMPs significantly surpass the benchmark mesoporous graphite carbonnitride (mpg-C3N4) photocatalyst. Intriguingly, TzTz-CMP-2 displays the best photocatalytic activity for the blue-light-mediated selective transformation of primary and secondary amines into imines. The conversions of amines were up to 90% with excellent selectivities for imines. This work highlights that CMPs with TzTz linkages may offer efficient photocatalytic selective transformations under genuinely ambient conditions.Controlling the composition and microstructure of nanomaterials is still a significant challenge in developing high-performance microwave absorption (MA) materials. Herein, metal-organic framework (MOF)-derived hollow CoFe@C nanoboxes are designed and prepared through the facile regulating the mass ratios of ZIF-67/PFC and a thermal annealing treatment. The CoFe@C composite can achieve an excellent MA performance, which have two high reflection loss (RL) values at different thickness. A RL value of -31.0 dB is obtained at 11.84 GHz with a matching thickness of 2.4 mm, and a RL value can reach -44.1 dB (4.08 GHz) at a matching thickness of 5.8 mm, and a correspondingly wide absorbing bandwidth (5.20 GHz, from 9.7 to 14.9 GHz) is simultaneously obtained at a matching thickness of 2.3 mm. The magnetic loss, interfacial polarization and hollow structure are the main reasons for their excellent MA capability. This work provides a research idea for the development of the efficient MOF-based MA materials in practical application.Most of the sedimentary carbonates deposited in the marine environments are composed of calcium carbonate minerals with varying amounts of incorporated Mg2+. However, understanding how interactions of impurities with carbonate and their incorporation affect sediments behavior remains a challenge. Here, a new insight is obtained by monitoring solution composition, morphology, and electrokinetic potential of carbonate particles formed in a spontaneous unseeded batch precipitation experiment using electrochemical and scanning electron microscopy methods. The solid composition and growth rate are extracted from changes in the bulk composition and fitted to chemical affinity rate law, revealing that the precipitation pathway consists of second-order dissolution and first-order precipitation. The molecular dynamics simulations show that the lattice strain induced by randomly substituting Ca2+ by Mg2+ stabilizes spherical nanoparticles and reduces their surface area and volume. Combining kinetics and thermodynamics insight, we conclude that variation in the carbonate bulk and interfacial energies, along with the solution supersaturation, lead to the dissolution-precipitation transformation pathway from Mg-rich to Mg-poor carbonate phase that preserves spherulitic morphology. Our findings are relevant for long-standing questions of how impurities influence diagenesis of carbonate sediments and spherulitic carbonate particles' origin.Catalysts/co-catalysts for cathodic oxygen reduction and anodic methanol oxidation reactions (ORR/MOR) play the major roles in promoting the commercialization of direct methanol fuel cells. Herein, bimetallic zeolite-imidazolate-frameworks (CoZn-ZIFs) is used as precursor to synthesize Co3O4@NPC/CuO composites as catalysts for ORR and Pt supports/co-catalysts for MOR. The ORR activity (E1/2 = 0.83 V) and long-term stability (activity retention of 85.5% after 30,000 s) of Co3O4@NPC/CuO-400 (400 °C) dodecahedron are better than those of commercial Pt/C (10 wt%) in alkaline electrolytes. The surface CuO with variable valence states (Cu0 and Cu2+) can be used as both the active component for ORR and the protective layer for Co3O4 to enhance catalytic stability. Partial removal of CoOx from carbon framework promotes the exposure of highly active sites (Co2+) on the Co3O4. For MOR, the mass activity of Pt-Co3O4@NPC/CuO-400 (5 wt%) (1947 mA mgPt-1) is much higher than that of Pt/C (751 mA mgPt-1), mainly attributing to that the Pt active sites are uniformly dispersed on Co3O4@NPC/CuO support. The strong interaction between Pt and CuO can reduce the bond strength of Pt-CO to enhance CO resistance. Co3O4 can activate H2O molecules to provide sufficient OH- species to promote MOR. This study provides a new idea for preparation of active ORR catalysts and MOR co-catalyst from bimetallic ZIFs.

Autoři článku: Caspersenmccarty4466 (Battle Parks)