Casesweeney8463
This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
The pig gut microbiome harbors thousands of species of archaea, bacteria, viruses and eukaryotes such as protists and fungi. However, since the majority of published studies have been focused on prokaryotes, little is known about the diversity, host-genetic control, and contributions to host performance of the gut eukaryotic counterparts. Here we report the first study that aims at characterizing the diversity and composition of gut commensal eukaryotes in pigs, exploring their putative control by host genetics, and analyzing their association with piglets body weight.
Fungi and protists from the faeces of 514 healthy Duroc pigs of two sexes and two different ages were characterized by 18S and ITS ribosomal RNA gene sequencing. The pig gut mycobiota was dominated by yeasts, with a high prevalence and abundance of Kazachstania spp. Regarding protists, representatives of four genera (Blastocystis, Neobalantidium, Tetratrichomonas and Trichomitus) were predominant in more than the 80% of the pigs. Heritabiliht after weaning and members from the gut fungal and protist eukaryote community. Overall, this study highlights the relevance of considering, along with that of bacteria, the contribution of the gut eukaryote communities to better understand host-microbiome association and their role on pig performance, welfare and health.
Our results point towards a minor and taxa specific genetic control over the diversity and composition of the pig gut eukaryotic communities. Moreover, we provide evidences of the associations between piglets' body weight after weaning and members from the gut fungal and protist eukaryote community. Overall, this study highlights the relevance of considering, along with that of bacteria, the contribution of the gut eukaryote communities to better understand host-microbiome association and their role on pig performance, welfare and health.
The microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as "microbiota", play an essential role in digestion and are important in regulating the immune response. Whereas the intestinal microbiota in humans and model organisms has been studied for many years, much less is known about the microbiota populating the intestinal tract of wild animals.
The relatively large number of raptors admitted to the Tufts Wildlife Clinic on the Cummings School of Veterinary Medicine at Tufts University campus provided a unique opportunity to investigate the bacterial microbiota in these birds. Opportunistic collection of fecal samples from raptors of 7 different species in the orders Strigiformes, Accipitriformes, and Falconiformes with different medical histories generated a collection of 46 microbiota samples. find more Based on 16S amplicon sequencing of fecal DNA, large β-diversity values were observed. Many comparisons exceeded weighted UniFrac distances of 0.9. Microbiota diversity did not of captivity on the fecal microbiota is relevant to understanding the response of wildlife to captivity and optimizing wildlife rehabilitation and conservation efforts.
The development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples. In addition, the interactions among four different rumen microbial groups (bacteria, archaea, fungi and protozoa) in the rumen of yak are not well defined. In this study, the rumen microbiota of full-grazing yaks aged 7 days to 12 years old was assessed to determine the maturation patterns of these four microbial groups and the dynamic interactions among them during different growth stages.
The rumen microbial groups (bacteria, archaea, protozoa and fungi) varied through the growth of yaks from neonatal (7 days) to adult (12 years), and the bacterial and archaeal groups were more sensitive to changes in growth stages compared to the two eukaryotic microbial groups. The age-discriminatory taxa within each microbial group were identified with the random forest model. Among them, Olsenella (bacteria), Group trajectory and the intra- and inter-interactions among bacteria, archaea, fungi and protozoa in the rumen of grazing yaks across the lifetime of yaks. The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem.
This study depicted a comprehensive view of rumen microbiota changes in different growth stages of grazing yaks. The results revealed the unique microbiota maturation trajectory and the intra- and inter-interactions among bacteria, archaea, fungi and protozoa in the rumen of grazing yaks across the lifetime of yaks. The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem.
The hamadryas baboon (Papio hamadryas) is a highly social primate that lives in complex multilevel societies exhibiting a wide range of group behaviors akin to humans. In contrast to the widely studied human microbiome, there is a paucity of information on the host-associated microbiomes of nonhuman primates (NHPs). Here, our goal was to understand the microbial composition throughout different body sites of cohabiting baboons.
We analyzed 170 oral, oropharyngeal, cervical, uterine, vaginal, nasal and rectal samples from 16 hamadryas baboons via 16S rRNA gene sequencing. Additionally, raw Miseq sequencing data from 1041 comparable publicly available samples from the human oral cavity, gut and vagina were reanalyzed using the same pipeline. We compared the baboon and human microbiome of the oral cavity, gut and vagina, showing that the baboon microbiome is distinct from the human. Baboon cohabitants share similar microbial profiles in their cervix, uterus, vagina, and gut. The oral cavity, gut and vagina shared more bacterial amplicon sequence variants (ASVs) in group living baboons than in humans.