Casemoody3501
The gross anatomy dissection course is considered to be one of the most important subjects in medical school. Advancing technology facilitates the production of e-learning material that can improve the learning of topographic anatomy during the course. The purpose of this study was to examine a locally produced audiovisual dissection manual's effects on performance in dissection, formal knowledge gained, motivation, emotions, learning behavior, and learning efficiency of the medical students. The results, combined with the total effort put into the production of the manual, should support decisions on further implementation of this kind of audiovisual e-learning resource into the university's curriculum. First-year medical students (n = 279) were randomly divided into three groups for two weeks within the regular dissection course hours during the dissection of the anterior and posterior triangles of the neck. Two groups received an audiovisual dissection manual (n = 96) or an improved written manual (n = 94) as an intervention, the control group (n = 89) received the standard dissection manual. After dissection, each student filled out tests and surveys and their dissections were evaluated. The audiovisual dissection manual did not have any significant positive effects on the examined parameters. The effects of the audiovisual dissection manual on the medical students' learning experience, as observed in this study, did not support further curriculum implementation of this kind of e-learning resource. This study can serve as an orientation for further evaluation and design of e-learning resources for the gross anatomy dissection course.Mass spectrometry-based plasma proteomics has been demonstrated to be a useful tool capable of quantifying hundreds of proteins in a single LC-MS/MS experiment, for biomarker discovery or elucidation of disease mechanisms. We developed a novel data-independent acquisition (DIA)/MS-based workflow for high-throughput, in-depth and estimated absolute quantification of plasma proteins (termed HIAP-DIA), without depleting high-abundant proteins, in a single-shot experiment. In HIAP-DIA workflow, we generated an ultra-deep cumulative undepleted and depleted spectral library which contained 55,157 peptides and 5,328 proteins, optimized column length (50 cm) and gradient (90 min) of liquid chromatography instrumentation, optimized 50 DIA segments with average isolation window 17 Th, and selected reference proteins for estimated absolute quantification of all plasma proteins. A total of 606 proteins were quantified in triplicate, and 427 proteins were quantified with CV less then 20% in plasma proteome. R-squared value of overlapped 208 endogenous PQ500 estimated protein amounts from HIAP-DIA and absolute quantification with internal standards was 0.82, indicating high quantification accuracy of HIAP-DIA. As a pilot study, the HIAP-DIA approach described here was applied to a myelodysplastic syndromes (MDS) disease cohort. We achieved absolute quantification of 789 plasma proteins in 22 clinical plasma samples, spanning less than six orders of magnitude with quantification limit 10-20 ng/mL, and discovered 95 differentially expressed proteins providing insights into MDS pathophysiology.Cell cultures are indispensable for both basic and applied research. Advancements in cell culture and analysis increase their utility for basic research and translational applications. A marked development in this direction is advent of three-dimensional (3D) cultures. The extent of advancement in 3D cell culture methods over the past decade has warranted referring to a single cell type being cultured as an aggregate or spheroid using simple scaffolds as "traditional." In recent years, the development of "next-generation" devices has enabled cultured cells to mimic their natural environments much better than the traditional 3D culture systems. Automated platforms like chip-based devices, magnetic- and acoustics-based assembly devices, di-electrophoresis (DEP), micro pocket cultures (MPoC), and 3D bio-printing provide a dynamic environment compared to the rather static conditions of the traditional simple scaffold-based 3D cultures. Chip-based technologies, which are centered on principles of microfluidics, are revolutionizing the ways in which cell culture and analysis can be compacted into table-top instruments. A parallel evolution in analytical devices enabled efficient assessment of various complex physiological and pathological endpoints. This is augmented by concurrent development of software enabling rapid large-scale automated data acquisition and analysis like image cytometry, elastography, optical coherence tomography, surface-enhanced Raman scattering (SERS), and biosensors. The techniques and devices utilized for the purpose of 3D cell culture and subsequent analysis depend primarily on the requirement of the study. We present here an in-depth account of the devices for obtaining and analyzing 3D cell cultures.
To determine the potential association between physician gender and academic advancement among US rheumatologists.
We performed a nationwide, cross-sectional study of all rheumatologists practicing in the US in 2014 using a comprehensive database of all licensed physicians. Among academic rheumatologists, we estimated gender differences in faculty rank, adjusting for differences in physician age, years since residency graduation, publications, National Institutes of Health (NIH) grants, registered clinical trials, and appointment at a top 20 medical school using a multivariate logistic regression model. see more We also estimated gender differences in leadership positions (i.e., division director and fellowship program director).
Among 6,125 total practicing rheumatologists, 941 (15%) had academic faculty appointments in 2014. Women academic rheumatologists (41.4%) were younger and had completed residency more recently than men. Women had fewer total publications, publications on which they were the first or las influence faculty promotion. These differences suggest barriers to academic promotion despite representation in leadership positions within rheumatology divisions.The absorption, metabolism, and excretion (AME) profiles of KD101, currently under clinical development to treat obesity, were assessed in humans using accelerator mass spectrometry (AMS) after a single oral administration of KD101 at 400 mg and a microdose of 14 C-KD101 at ~ 35.2 μg with a total radioactivity of 6.81 kBq. The mean total recovery of administered radioactivity was 85.2% with predominant excretion in the urine (78.0%). The radio-chromatographic metabolite profiling showed that most of the total radioactivity in the plasma and the urine was ascribable to metabolites. The UDP-glucuronosyltransferase (UGT), including UGT1A1, UGT1A3, and UGT2B7, might have contributed to the interindividual variability in the metabolism and excretion of KD101. The microtracing approach using AMS is a useful tool to evaluate the AME of a drug under development without risk for high radiation exposure to humans.Previous studies shown that myeloperoxidase (MPO) level is higher in patients with atrial fibrillation (AF); however, no genetic evidence between MPO and AF risk in human population was observed. Therefore, the present study was aimed to investigate the association between rs2243828, a variant in promoter region of MPO and the risk of AF in Chinese GeneID population. The results demonstrated that the minor G allele of rs2243828 showed a significant association with AF in two independent population (GeneID-north population with 694 AF cases and 710 controls, adjusted P-adj = 6.25 × 10-3 with an odds ratio was 0.77, GeneID-central population with 1106 cases and 1501 controls, P-adj = 9.88 × 10-5 with an odds ratio was 0.75). The results also showed G allele was significantly associated with lower plasma concentration of myeloperoxidase in general population. We also observed a significant difference of odds ratio between subgroups of hypertension and non-hypertension. Therefore, our findings identified variant in MPO associated with risk of AF and it may give strong evidence to link the inflammation with the incidence of AF.Caloric restriction (CR) is an innovative therapy used in tumor tissue and tumor model studies to promote cell death and decrease cell viability. Caloric restriction mimetics (CRMs) are a class of drugs that induce CR and starvation conditions within a cell. When used simultaneously with other chemotherapy agents, the effects are synergistic and effective at promoting tumor cell death. In this review, we discuss CRMs and their potential as cancer therapeutics. Firstly, we establish an overview of CR and its impacts on healthy and tumor cells. CR and CRM drugs have shown to decrease age-related diseases and can act as an anti-cancer agent. As it can be challenging for an individual to diligently stick to a diet that would induce CR, CRMs are even more desirable. Then, we discuss the drug class by highlighting three CRMs resveratrol, (-)-hydroxycitric acid, and rapamycin. These CRMs are commonly known for their dietary effects, but the underlying mechanisms that drive cellular metabolic and proteomic changes show promise as a cancer therapeutic. Lastly, we highlight the use of mass spectrometry and proteomic techniques on experiments utilizing CRM drugs to understand the cellular pathways impacted by this drug class, leading to a better understanding of the anti-cancer properties and potentials of CRM.The first SnI diradical [(ADCPh )Sn]2 (4) based on an anionic dicarbene (ADCPh =CN(Dipp)2 CPh; Dipp=2,6-iPr2 C6 H3 ) scaffold has been isolated as a green crystalline solid by KC8 reduction of the corresponding bis-chlorostannylene [(ADCPh )SnCl]2 (3). The six-membered C4 Sn2 -ring of 4 containing six π-electrons shows a diatropic ring current, thus 4 may also be regarded as the first 1,4-distannabenzene derivative. DFT calculations suggest an open-shell singlet (OS) ground state of 4 with a remarkably small singlet-triplet energy gap (ΔEOS-T =4.4 kcal mol-1 ), which is consistent with CASSCF (ΔES-T =6.6 kcal mol-1 and diradical character y=37 %) calculations. The diradical 4 splits H2 at room temperature to yield the bis-hydridostannylene [(ADCPh )SnH]2 (5). Further reactivity of 4 has been studied with PhSeSePh and MeOTf.
Hypothermic storage at 5°C has been investigated as an alternative to promote the prudent use of antibiotics for boar artificial insemination doses. However, this temperature is challenging for some ejaculates or boars.
The present study aimed to identify putative biomarkers for semen resistance to hypothermic storage at 5°C by comparing the seminal plasma proteomes of boars with high and low seminal resistance to preservation at 5°C.
From an initial group of 34 boars, 15 were selected based on the following criteria ejaculate with ≤20% abnormal spermatozoa and at least 70% progressive motility at 120hours of storage at 17°C. Then, based on the response to semen hypothermic storage at 5°C, boars were classified into two categories high resistance-progressive motility of >75% in the three collections (n=3); and low resistance-progressive motility of <75% in the three collections (n=3). Seminal plasma proteins were analyzed in pools, and differential proteomics was performed using Multidimensional Protein Identification Technology.