Casebernard9525
Across analyses, we found that executive functioning moderated youths' neural responses during both reward anticipation and performance feedback, predominantly with respect to amygdala connectivity with prefrontal/frontal and temporal structures, supporting previous theoretical models of brain development during adolescence. Overall, youths with worse executive functioning had more pronounced differences in neural activation and connectivity between task conditions compared with youths with better executive functioning. This study contributes to elucidating the relationship between "cool" and "hot" processes and our findings demonstrate that simple executive functioning skills moderate more complex processes that involve incorporation of numerous skills in an emotionally salient context, such as reward processing.The present study is the first to examine the time-dependent mechanism of acute stress on emotional attentional blink (EAB) with event-related potential (ERP) measures. We explored the stage characteristics of stress affecting EAB, whether it affects the early selective attention process (marked by early posterior negativity) or the late working memory consolidation (marked by late positive potential). Sixty-one healthy participants were exposed to either a Trier Social Stress Test (TSST) or a control condition, and salivary cortisol was measured to reflect the stress effect. ERPs were recorded during an attentional blink (AB) paradigm in which target one (T1) were negative or neutral images. Results showed stress generally reduced AB effects. Specifically, stress promoted the early selective attention process of target two (T2) following a neutral T1 but did not affect T2 consolidation into working memory. Correlational analyses further confirmed the positive effect of cortisol and negative emotional state on AB performance. Moreover, the ERP results of acute stress on AB conformed to the trade-off effect between T1 and T2; that is, stress reduced T1 late working memory consolidation and improved T2 early selective attention process. These findings further demonstrated that stress did not change the central resource limitation of AB. In general, stress generates a dissociable effect on AB early- and late-stage processing; namely, acute stress reduce the AB effect mainly from the improvement of participants' overall ability to select the targets in the early stage.Motor resonance (MR) can be influenced by individual differences and similarity in the physical appearance between the actor and observer. Recently, we reported that action simulation is modulated by an implicit visual sensitivity towards normal-weight compared with overweight bodies. Furthermore, recent research has suggested the existence of an action observation network responsible for MR, with limited evidence whether the primary motor cortex (M1) is part of this. We expanded our previous findings with regards to the role of an implicit normal-weight-body preference in the MR mechanism. At the same time, we tested the functional relevance of M1 to MR, by using a transcranial direct current stimulation (tDCS) protocol. Seventeen normal-weight and 17 overweight participants were asked to observe normal-weight or overweight actors reaching and grasping a light or heavy cube, and then, at the end of each video-clip to indicate the correct cube weight. Before the task, all participants received 15 min of sham or cathodal tDCS over the left M1. Measures of anti-fat attitudes were also collected. During sham tDCS, all participants were better in simulating the actions performed by normal-weight compared with overweight models. Surprisingly, cathodal tDCS selectively improved the ability in the overweight group to simulate actions performed by the overweight models. This effect was not associated with scores of fat phobic attitudes or implicit anti-fat bias. Our findings are discussed in the context of relevance of M1 to MR and its social modulation by anti-fat attitudes.Organotin compounds are applied in several industrial reactions and can present antifungal and antibacterial activities. Incorrect handling and storage practices of biodiesel and diesel-biodiesel blends can lead to microbial development, impacting its final quality. Concerning this problem, this work investigated the antimicrobial action of two organotin catalysts used in biodiesel production with four isolated microroorganisms (Bacillus pumilus, Pseudomonas aeruginosa, Pseudallescheria boydii, and Aureobasidium pullulans) and a pool of microorganisms (ASTM E1259 standard practice). Samples of soybean biodiesel with different concentrations of dibutyl tin dilaurate (catalyst 1) and di-n-butyl-oxo-stannane (catalyst 2) were prepared and added of mineral medium. The pool of microorganisms was inoculated and incubated at 30 °C and final biomass was weighted after 14 days. Thereafter, soybean biodiesel with catalyst 2 was used. Fungal biomass was weighted, and plate count was used to assess bacterial growth. Results show that catalysts 1 and 2 presented no inhibitory activity on the pool of microorganisms evaluated. A slight inhibitory activity was observed for B. pumilus and A. pullulans growth, but not for P. boydii, P. aeruginosa, or the pool of microorganisms. Tofacitinib chemical structure All experiment exhibited acidification higher than sterile control. Infrared analysis show less microbiological degradation products in the tin-protected fuel with ASTM inoculum. These results suggest that these tin-based catalysts show no toxic effect on native microbial population and a slight effect on some isolated microbial population in laboratory scale and for the first time shows that these organotin compounds can be employed safely as biodiesel catalyst. Graphical abstract.Assessments of large-scale changes in habitat are a priority for management and conservation. Traditional approaches use land use and land cover data (LULC) that focus mostly on "structural" properties of landscapes, rather than "functional" properties related to specific ecological processes. Here, we contend that designing functional analyses of LULC can provide important and complementary information to traditional, structural analyses. We substantiate this perspective with an example of functional changes in habitat due to industrial anthropogenic footprints in Alberta's boreal forest, where there has been little overall forest loss (~ 6% structural change), but high levels of functional change (up to 93% functional change) for species' habitat, biodiversity, and wildfire ignition. We discuss the methods needed to achieve functional LULC analyses, when they are most appropriate to add to structural assessments, and conclude by providing recommendations for analyses of LULC in a future of increasingly high-resolution, dynamic remote sensing data.