Carterwulff1534
Some cortical neurons receive highly selective thalamocortical (TC) input, but others do not. Here, we examine connectivity of single thalamic neurons (lateral geniculate nucleus, LGN) onto putative fast-spike inhibitory interneurons in layer 4 of rabbit visual cortex. We show that three 'rules' regulate this connectivity. These rules concern (1) the precision of retinotopic alignment, (2) the amplitude of the postsynaptic local field potential elicited near the interneuron by spikes of the LGN neuron, and (3) the interneuron's response latency to strong, synchronous LGN input. We found that virtually all first-order fast-spike interneurons receive input from nearly all LGN axons that synapse nearby, regardless of their visual response properties. This was not the case for neighboring regular-spiking neurons. We conclude that profuse and highly promiscuous TC inputs to layer-4 fast-spike inhibitory interneurons generate response properties that are well-suited to mediate a fast, sensitive, and broadly tuned feed-forward inhibition of visual cortical excitatory neurons.Analysis of the smallest known arthropod genome reveals a mechanism for genome reduction that appears to be driven by a specialized ecological interaction with plants.The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.During a study investigating the microbiota of raw milk and its semi-finished products, strains WS 5106T and WS 5096 were isolated from cream and skimmed milk concentrate. They could be assigned to the genus Pseudomonas by their 16S rRNA sequences, but not to any validly named species. In this work, a polyphasic approach was used to characterize the novel strains and to investigate their taxonomic status. Examinations based on the topology of core genome phylogenomy as well as average nucleotide identity (ANIm) comparisons suggested a novel Pseudomonas species within the Pseudomonas fluorescens subgroup. With pairwise ANIm values of 90.1 and 89.8 %, WS 5106T was most closely related to Pseudomonas nabeulensis CECT 9765T and Pseudomonas kairouanensis CECT 9766T. The G+C content of strain WS 5106T was 60.1 mol%. Morphologic analyses revealed Gram-stain-negative, aerobic, catalase and oxidase positive, rod-shaped and motile cells. Proteolysis on skimmed milk agar as well as lipolysis on tributyrin agar occurred at both 28 and 6 °C. Tolerated growth conditions were temperatures between 4 and 34 °C, pH values between 6.0 and 8.0, and salt concentrations of up to 5 %. Fatty acid profiles showed a pattern typical for Pseudomonas, with C16 0 as the dominant component. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol and the dominating quinone was Q-9. Based on these results, it is proposed to classify the strains as a novel species, Pseudomonas cremoris sp. nov., with WS 5106T (=DSM 111143T=LMG 31863T) as type strain and WS 5096 (=DSM 111129=LMG 31864) as an additional strain.Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with 'Ca. Phytoplasma cynodontis' strain BGWL-C1 followed by 97.65 % similarity with 'Ca. P. oryzae' strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to 'Ca. P. cynodontis', were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. HSP (HSP90) inhibitor Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon 'Candidatus Phytoplasma sacchari' is proposed.In Australia, Stylosanthes little leaf (StLL) phytoplasma has been detected in Stylosanthes scabra Vogel, Arachis pintoi Krapov, Saccharum officinarum L., Carica papaya L., Medicago sativa L., and Solanum tuberosum L. The 16S rRNA gene sequence of StLL phytoplasma strains from S. scabra, C. papaya, S. officinarum and S. tuberosum were compared and share 99.93-100 % nucleotide sequence identity. Phylogenetic comparisons between the 16S rRNA genes of StLL phytoplasma and other 'Candidatus Phytoplasma' species indicate that StLL represents a distinct phytoplasma lineage. It shares its most recent known ancestry with 'Ca. Phytoplasma luffae' (16SrVIII-A), with which it has 97.17-97.25 % nucleotide identity. In silico RFLP analysis of the 16S rRNA amplicon using iPhyClassifier indicate that StLL phytoplasmas have a unique pattern (similarity coefficient below 0.85) that is most similar to that of 'Ca. Phytoplasma luffae'. The unique in silico RFLP patterns were confirmed in vitro. Nucleotide sequences of genes that are more variable than the 16S rRNA gene, namely tuf (tu-elongation factor), secA (partial translocation gene), and the partial ribosomal protein (rp) gene operon (rps19-rpl22-rps3), produced phylogenetic trees with similar branching patterns to the 16S rRNA gene tree.