Carrollchurchill3316

Z Iurium Wiki

Herein we describe a catalyst-free regioselective [3 + 3] annulation/oxidation reaction of cyclic amidines such as DBU (1,8-diazabicyclo(5.4.0)undec-7-ene) and DBN (1,5-diazabicyclo(4.3.0)non-5-ene) with activated olefins, i.e., 2-arylidenemalononitriles and 2-cyano-3-aryl acrylates, to afford tricyclic 2-pyridones and pyridin-2(1H)-imines, respectively. The mechanism has been proposed based on DFT calculations. Bafilomycin A1 In the reaction, the cyclic amidines serve as C,N-bisnucleophiles for the cyclization, while the olefins play a dual role by acting as both reactants and oxidants.The desymmetrization of ten prochiral diols by phosphoryl transfer with a titanium-BINOLate complex is discussed. The phosphorylation of nine 1,3-propane diols is achieved in yields of 50-98%. Enantiomeric ratios as high as 928 are achieved with diols containing a quaternary C-2 center incorporating a protected amine. The chiral ligand, base, solvent, and stoichiometry are evaluated along with a nonlinear effect study to support an active catalyst species that is oligomeric in chiral ligand. The use of pyrophosphates as the phosphorylating agent in the desymmetrization facilitates a user-friendly method for enantioselective phosphorylation with desirable protecting groups (benzyl, o-nitrobenzyl) on the phosphate product.The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.1,4,8-Triazaocta-1,3,5,7-tetraenes, generated in situ by Rh2(Piv)4-catalyzed denitrogenative coupling of pyrazoles with 1-sulfonyl-1,2,3-triazoles, smoothly form 2,6,8-triazabicyclo[3.2.1]octa-3,6-dienes via intramolecular aza-Diels-Alder cycloaddition. This domino reaction, combined with the subsequent thermal or acid-catalyzed rearrangement of the cycloadducts, provides direct and flexible access to N-sulfonylated (Z)-2-(2-aminovinyl)imidazoles.Recent studies of silicon spin qubits at temperatures above 1 K are encouraging demonstrations that the cooling requirements for solid-state quantum computing can be considerably relaxed. However, qubit readout mechanisms that rely on charge sensing with a single-island single-electron transistor (SISET) quickly lose sensitivity due to thermal broadening of the electron distribution in the reservoirs. Here we exploit the tunneling between two quantized states in a double-island single-electron transistor (SET) to demonstrate a charge sensor with an improvement in the signal-to-noise ratio by an order of magnitude compared to a standard SISET, and a single-shot charge readout fidelity above 99% up to 8 K at a bandwidth greater than 100 kHz. These improvements are consistent with our theoretical modeling of the temperature-dependent current transport for both types of SETs. With minor additional hardware overhead, these sensors can be integrated into existing qubit architectures for a high-fidelity charge readout at few-kelvin temperatures.Protein-based pharmaceutical products are subject to a variety of environmental stressors, during both production and shelf-life. In order to preserve their structure, and, therefore, functionality, it is necessary to use excipients as stabilizing agents. Among the eligible stabilizers, cyclodextrins (CDs) have recently gained interest in the scientific community thanks to their properties. Here, a computational approach is proposed to clarify the role of β-cyclodextrin (βCD) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) against granulocyte colony-stimulating (GCSF) factor denaturation at the air-water and ice-water interfaces, and also in bulk water at 300 or 260 K. Both traditional molecular dynamics (MD) simulations and enhanced sampling techniques (metadynamics, MetaD) are used to shed light on the underlying molecular mechanisms. Bulk simulations revealed that CDs were preferentially included within the surface hydration layer of GCSF, and even included some peptide residues in their hydrophobic cavity. HPβCD was able to stabilize the protein against surface-induced denaturation in proximity of the air-water interface, while βCD had a destabilizing effect. No remarkable conformational changes of GCSF, or noticeable effect of the CDs, were instead observed at the ice surface. GCSF seemed less stable at low temperature (260 K), which may be attributed to cold-denaturation effects. In this case, CDs did not significantly improve conformational stability. In general, the conformationally altered regions of GCSF seemed not to depend on the presence of excipients that only modulated the extent of destabilization with either a positive or a negative effect.An ab initio evolutionary search algorithm was combined with density functional theory (DFT) calculations to predict a series of 2-D BxNy (1 less then x/y ≤ 2). Particularly, B5N3 and B7N5 monolayers have sufficiently low formation enthalpy and excellent dynamic stability that make them promising for synthesis in experiments. Electronic structure calculations reveal that B5N3 and B7N5 monolayers possess an indirect band gap of 1.99 eV and a direct band gap of 2.40 eV, respectively. The calculated absorption coefficients for B5N3 and B7N5 monolayers are significantly improved in the low end of the visible region compared with that of 2-D h-BN. Moreover, our calculations reveal that both B5N3 and B7N5 monolayers have high electron carrier mobilities. The narrow band gaps, high carrier mobilities, strong near-ultraviolet absorption, and high synthesis possibility of B5N3 and B7N5 monolayers render them promising new materials for application in novel electronics and environmentally benign solar energy conversion.

Autoři článku: Carrollchurchill3316 (Mclaughlin Friedrichsen)