Carrilloschulz7983
Understanding the correct interaction among the different components of the endocannabinoid (eCB) system is fundamental for a proper assessment of the function of eCBs as signaling molecules. The knowledge of how the membrane environment modulates the intracellular trafficking of the eCB system and its interacting proteins holds a huge potential in unraveling new mechanisms of its modulation. This chapter deals with the application of fluorescence resonance energy transfer technique to measure the binding affinity of eCB proteins to model membranes (i.e., large unilamellar vesicles, LUVs). In particular, we describe in detail the paradigmatic example of the interaction of rat recombinant fatty acid amide hydrolase with LUVs constituted of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.Conventional techniques to reveal the neuroanatomical distribution of type 1 cannabinoid receptor (CB1) in the brain, at the cellular and subcellular level, are mainly represented by light, confocal, and electron microscopy. By using immunoperoxidase and immunofluorescence methods, it is possible to reveal CB1 distribution and localization in the brain and its changes under pathological conditions. Moreover, by using electron microscopy, we can define the ultrastructural localization at the level of subcellular structures and organelles. Here, we describe immunoperoxidase, immunofluorescence, and electron microscopy protocols used to get information about CB1 spatial distribution and localization in the brain. Preparation of reagents, resin embedding, preparation for an endogenous activity-blocking step, and background counterstaining and revelation of CB1 by using specific labeled secondary antibodies will be presented. The methods here discussed are highly sensitive and specific multistep processes, where each step is critical to finally obtain an optimum signal.Measuring the functional behavior of G protein-coupled receptors (GPCRs) has been a major focus of academic and pharmaceutical research for many decades. These efforts have led to the development of many assays to measure the downstream effects of ligand binding on receptor activity. In this chapter, we describe an internalization/recycling assay that can be used to track changes in receptor number at the plasma membrane. Used in concert with other assays, this antibody-based technique can provide dynamic information on GPCR activation by receptor-specific ligands.Measuring protein levels of receptors and enzymes involved in endocannabinoid metabolism is an important step for understanding the distribution, function, and regulation of these components of the endocannabinoid system. A common approach for detecting proteins from complex biological systems is western blotting. In this chapter, we describe a general approach to western blotting protein components of the endocannabinoid system using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose membranes with a focus on detecting type 1 cannabinoid (CB1) receptors. When this technique is carefully used, with due attention paid to the validation of the primary antibodies used, it can provide quantitative information on protein expression levels. Additional information can also be inferred from western blotting such as potential pre- and post-translational modifications (e.g., alternative splicing, phosphorylation, or glycosylation) that can be further evaluated by specific analytical techniques.DNA methylation pattern could be considered a biomarker to be exploited for the study and management of several human diseases. Apocynin clinical trial In this chapter, detailed protocols are provided for two experimental approaches used for quantitative methylation analysis of bisulfite converted DNA methylation-specific PCR (MSP) and pyrosequencing.In this chapter, we will describe the bioinformatic tools that allow verifying the presence of CpG islands in a gene promoter region. We will also describe the tools needed to identify consensus motifs for specific transcription factors, focusing on the study of rat type-1 cannabinoid receptor gene (R_Cnr1) as a case study.Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a major development in PCR technology, is a powerful and sensitive gene analysis technique that has revolutionized the field of gene expression assays. In this chapter, we describe in detail RNA extraction, reverse transcription (RT), and relative quantification of genes forming the endocannabinoid system in different experimental models. In particular, we here provide specific and sensitive assays to be used to assess gene expression of the endocannabinoid system components in mouse, rat, or human samples.Endocannabinoids at nanomolar physiological concentrations cross cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics and endocannabinoid trafficking employing radioligands and mass spectrometry. Here, we describe radiosubstrate-based assays using arachidonoyl[1-3H]ethanolamine and 2-arachidonoyl[1,2,3-3H]glycerol to measure cellular endocannabinoid uptake in a three-phase assay with human U937 cells. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS)-based lipidomics was used to interrogate the roles of serum and albumin for endocannabinoid trafficking in U937 cells.Cytochrome P450 enzymes are a large family of heme-containing proteins that have important functions in the biotransformation of xenobiotics, including pharmacologic and environmental agents, as well as endogenously produced chemicals with broad structural and functional diversity. Anandamide and 2-arachidonoylglycerol (2-AG) are substrates for P450s expressed in multiple tissues, leading to the production of a diverse set of mono- and di-oxygenated metabolites. This chapter describes tools and methods that have been used to identify major endocannabinoid metabolizing P450s and their corresponding products using subcellular tissue fractions, cultured cells, and purified recombinant enzymes in a reconstituted system.The endocannabinoids anandamide and 2-arachidonoylglycerol are not only metabolized by serine hydrolases, such as fatty acid amide hydrolase, monoacylglycerol lipase, and α,β-hydrolases 6 and 12, but they also serve as substrates for cyclooxygenases, cytochrome P450s, and lipoxygenases. These enzymes oxygenate the 1Z,4Z-pentadiene system of the arachidonic acid backbone of endocannabinoids, thereby giving rise to an entirely new array of bioactive lipids. Hereby, a protocol is provided for the enzymatic synthesis, purification, and characterization of various oxygenated metabolites of anandamide generated by lipoxygenases, which enables the biological study and detection of these metabolites.The α,β-hydrolase fold-containing protein 2 (ABHD2) is a serine hydrolase, responsible for the cleavage of endogenous 2-arachidonoylglycerol (2-AG). ABHD2 is activated by progesterone, thus, it is considered a nonnuclear receptor of this steroid hormone that terminates its biological effects. The products of ABHD2-catalyzed cleavage by the natural substrate 2-AG are glycerol and arachidonic acid; here, instead of 2-AG, the radioactive substrate 2-oleoyl-[3H]glycerol has been used as already done in various acylglycerol lipase activity assays. The amount of [3H]glycerol released allows to measure ABHD2 enzymatic activity.Monoacylglycerol lipase (MGL/MAGL/MGLL) is a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). 2-AG is the most abundant endogenous lipid agonists for cannabinoid receptors in the brain and elsewhere in the body. In the central nervous system (CNS), MGL is localized to presynaptic nerve terminals of both excitatory and inhibitory synapses, where it controls the regulatory actions of 2-AG on synaptic transmission and plasticity. In this chapter, we describe an in vitro method to assess MGL activity by liquid chromatography/mass spectrometry (LC/MS)-based quantitation of its reaction product. The method may be used to determine basal or altered MGL activity in cells or tissues after pharmacological, genetic, or biological interventions. In addition, the assay can be used for MGL inhibitor screening using purified recombinant enzyme or MGL-overexpressing cells.The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Different methodological approaches for measuring DAGL activity in biological samples are now available. Here, a highly sensitive radiometric assay to assess DAGL activity, by using 1-oleoyl[1-14C]-2-arachidonoylglycerol as the substrate, is reported. All the steps required to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [14C]-oleic acid via scintillation counting are described in detail.N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal hydrolase degrading various N-acylethanolamines at acidic pH. NAAA prefers anti-inflammatory and analgesic palmitoylethanolamide to other N-acylethanolamines as a substrate, and its specific inhibitors are shown to exert anti-inflammatory and analgesic actions in animal models. Therefore, these inhibitors are expected as a new class of therapeutic agents. Here, we introduce an NAAA assay system, using [14C]palmitoylethanolamide and thin-layer chromatography. The preparation of NAAA enzyme from native and recombinant sources as well as the chemical synthesis of N-[1'-14C]palmitoyl-ethanolamine is also described.Fatty acid amide hydrolase (FAAH) is the enzyme responsible for the degradation of anandamide (N-arachidonoylethanolamine, AEA) to arachidonic acid (AA) and ethanolamine. The method described here measures FAAH activity through the fluorometric arachidonoyl-7-amino-4-methyl-coumarin amide (AAMCA) substrate, which allows a simple and sensitive assay suitable for high-throughput screening tests. FAAH catalyzes the hydrolysis of AAMCA producing AA and the highly fluorescent compound 7-amino-4-methylcoumarin (AMC).Fatty acid amide hydrolase (FAAH) is an intracellular enzyme responsible for the hydrolysis of endogenous anandamide (AEA), a reaction that terminates the biological effects of this lipid mediator. The final products of AEA cleavage are arachidonic acid and ethanolamine. In the method described herein, FAAH activity is measured through the use of the radioactive substrate [14C-ethanolamine]-AEA and subsequent quantification of the reaction product [14C]-ethanolamine.N-Acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is regarded as the principal enzyme that generates N-acylethanolamines (NAEs), a family of signaling lipids that includes the endocannabinoid anandamide. To investigate the biological function and biosynthesis of NAEs, we sought to develop potent NAPE-PLD inhibitors. To this aim, we utilized a high-throughput screening-compatible NAPE-PLD activity assay, which uses the fluorescence-quenched substrate PED6. This assay conveniently uses membrane fractions of NAPE-PLD overexpressing HEK293T cell lysates, thus avoiding the need for protein purification. Here, we give a detailed description of the NAPE-PLD PED6 fluorescence activity assay, which has increased throughput compared to previous radioactivity- or mass-spectrometry-based assays.