Carltonriddle4040

Z Iurium Wiki

amics.

For almost two centuries, ecologists have examined geographical patterns in the evolution of body size and the associated determinants. During that time, one of the most common patterns to have emerged is the increase in body size with increasing latitude (referred to as Bergmann's rule). Typically, this pattern is explained in terms of an evolutionary response that serves to minimize heat loss in colder climates, mostly in endotherms. In contrast, however, this rule rarely explains geographical patterns in the evolution of body size among ectotherms (e.g., reptiles).

China.

In this study, we assembled a dataset comprising the maximum sizes of 211 lizard species in China and examined the geographical patterns in body size evolution and its determinants. Specifically, we assessed the relationship between body size and climate among all lizard species and within four major groups at both assemblage and interspecific levels.

Although we found that the body size of Chinese lizards was larger in warmer reghat our analyses at two different levels may have contributed to the inconsistent results obtained in this study. Further studies investigating the effects of altitude and ecological factors are needed to gain a more comprehensive understanding of the evolution of ectotherm body size.Passive integrated transponder (PIT) tags allow a range of individual-level data to be collected passively and have become a commonly used technology in many avian studies. Although the potential adverse effects of PIT tags have been evaluated in several species, explicit investigations of their impacts on small ( less then 12 g) birds are limited. This is important, because it is reasonable to expect that smaller birds could be impacted more strongly by application of PIT tags. In this study, we individually marked Black-capped Chickadees (Poecile atricapillus), a small (circa 10 g) passerine, at the University of Alberta Botanic Garden to evaluate potential lethal and sublethal effects of two PIT tagging methods attachment to leg bands or subcutaneous implantation. We used a Cox proportional hazards model to compare the apparent survival of chickadees with leg band (N = 79) and implanted PIT tags (N = 77) compared with control birds that received no PIT tags (N = 76) over the subsequent 2 years based on mist net recaptures. We used radio-frequency identification (RFID) redetections of leg band PIT tags to evaluate sex-specific survival and increase the accuracy of our survival estimates. We also used a generalized linear regression model to compare the body condition of birds recaptured after overwintering with leg band PIT tags, implanted PIT tags, or neither. Our analysis found no evidence for adverse effects of either PIT tagging method on survival or body condition. While we recommend carefully monitoring study animals and evaluating the efficacy of different PIT tagging methods, we have shown that both leg band and subcutaneously implanted PIT tags ethical means of obtaining individualized information in a small passerine.A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts (Avena sativa) exposed to three naturally co-occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs] CYDV-RPV, BYDV-PAV, and BYDV-SGV) along experimental gradients of nitrogen and phosphorus supply. We asked whether disease risk (i.e., infection prevalence) differed in single versus co-inoculations, and whether these differences varied with rates and ratios of nitrogen and phosphorus supply. In single inoculations, the viruses did not respond strongly to nitrogen or phosphorus. However, in co-inoculations, we detected illustrative cases of 1) resource-dependent antagonism (lower prevalence of RPV with increasing N; possibly due to competition), 2) resource-dependent facilitation (higher prevalence of SGV with decreasing NP; possibly due to immunosuppression), and 3) weak or no interactions within hosts (for PAV). Together, these within-host interactions created emergent patterns for co-inoculated hosts, with both infection prevalence and viral richness increasing with the combination of low nitrogen and high phosphorus supply. Selleck Empesertib We demonstrate that knowledge of multiple pathogens is essential for predicting disease risk from host resources and that projections of risk that fail to acknowledge resource-dependent interactions within hosts could be qualitatively wrong. Expansions of theory from community ecology theory may help anticipate such relationships by linking host resources to diverse pathogen communities.The ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, Batrachochytrium dendrobatidis (Bd), affected the critical thermal minimum (CTmin) of two frog species, Hyla versicolor (gray treefrog) and Lithobates palustris (pickerel frog). The CTmin is the minimum thermal performance point of an organism, which we estimated via righting response trials. For both frog species, we compared the righting response of Bd-exposed and Bd-unexposed individuals in either a constant (15ºC) environment or with decreasing temperatures (-1°C/2.5 min) starting from 15°C. The CTmin for both species was higher for Bd-exposed frogs than unexposed frogs, and the CTmin of H. versicolor was higher than L. palustris. We also found that Bd-exposed frogs of both species righted themselves significantly fewer times in both decreasing and constant temperature trials. Our findings show that pathogen exposure can reduce cold tolerance and limit the thermal performance range of hosts, which may lead to increased overwintering mortality.In canids, resident breeders hold territories but require different resources than transient individuals (i.e., dispersers), which may result in differential use of space, land cover, and food by residents and transients. In the southeastern United States, coyote (Canis latrans) reproduction occurs during spring and is energetically demanding for residents, but transients do not reproduce and therefore can exhibit feeding behaviors with lower energetic rewards. Hence, how coyotes behave in their environment likely differs between resident and transient coyotes. We captured and monitored 36 coyotes in Georgia during 2018-2019 and used data from 11 resident breeders, 12 predispersing residents (i.e., offspring of resident breeders), and 11 transients to determine space use, movements, and relationships between these behaviors and landcover characteristics. Average home range size for resident breeders and predispersing offspring was 20.7 ± 2.5 km² and 50.7 ± 10.0 km², respectively. Average size of transient ranges was 241.4 ± 114.5 km². Daily distance moved was 6.3 ± 3.0 km for resident males, 5.5 ± 2.7 km for resident females, and 6.9 ± 4.2 km for transients. We estimated first-passage time values to assess the scale at which coyotes respond to their environment, and used behavioral change-point analysis to determine that coyotes exhibited three behavioral states. We found notable differences between resident and transient coyotes in regard to how landcover characteristics influenced their behavioral states. Resident coyotes tended to select for areas with denser vegetation while resting and foraging, but for areas with less dense vegetation and canopy cover when walking. Transient coyotes selected areas closer to roads and with lower canopy cover while resting, but for areas farther from roads when foraging and walking. Our findings suggest that behaviors of both resident and transient coyotes are influenced by varying landcover characteristics, which could have implications for prey.Multiple laboratory studies have evolved hosts against a nonevolving pathogen to address questions about evolution of immune responses. However, an ecologically more relevant scenario is one where hosts and pathogens can coevolve. Such coevolution between the antagonists, depending on the mutual selection pressure and additive variance in the respective populations, can potentially lead to a different pattern of evolution in the hosts compared to a situation where the host evolves against a nonevolving pathogen. In the present study, we used Drosophila melanogaster as the host and Pseudomonas entomophila as the pathogen. We let the host populations either evolve against a nonevolving pathogen or coevolve with the same pathogen. We found that the coevolving hosts on average evolved higher survivorship against the coevolving pathogen and ancestral (nonevolving) pathogen relative to the hosts evolving against a nonevolving pathogen. The coevolving pathogens evolved greater ability to induce host mortality even in nonlocal (novel) hosts compared to infection by an ancestral (nonevolving) pathogen. Thus, our results clearly show that the evolved traits in the host and the pathogen under coevolution can be different from one-sided adaptation. In addition, our results also show that the coevolving host-pathogen interactions can involve certain general mechanisms in the pathogen, leading to increased mortality induction in nonlocal or novel hosts.A useful method for characterizing biological numerous assemblages at regional scales is the species occupancy frequency distribution (SOFD). An SOFD shows the number or proportion of study sites each species occurred. Species that occur at only a few sites are termed satellite species, while species that occur at many sites are termed core species. This study is the first to document and assess SOFD patterns in aquatic macrophytes. It characterizes SOFD patterns of freshwater macrophyte assemblages in Finland at two spatial and two temporal scales. For this, I analyzed three published datasets on freshwater macrophyte distributions two from studies conducted at a local scale and the third from large national surveys. One local study and the national study also included data on temporal variation in species occupancy frequencies. In the national study, the number of core and satellite species varied slightly between the older and the newer survey, respectively. Among the 113 waterbodies surveyed as part of the national study, the SOFD followed a unimodal satellite pattern. However, for the older dataset (from the 1930s), a bimodal symmetric pattern also fit the SOFD data well. At the local scale, I observed geographical variation in SOFD patterns. The dataset from southern Finland followed a unimodal satellite SOFD pattern; data from central Finland instead displayed a bimodal symmetric SOFD pattern, although they also fit equally well with a bimodal truncated pattern. Moreover, temporal patterns in central Finland seemed to demonstrate a shift from a bimodal symmetric to a bimodal asymmetric SOFD probably. Geographical variation in the SOFD pattern may be due to variation in the regional species pool. The temporal changes in SOFD pattern may be due to lake eutrophication and anthropogenic disturbance around waterbodies, which may increase number of macrophyte species.

Autoři článku: Carltonriddle4040 (Scarborough Hamilton)