Carlsengadegaard2293
Overall, this fundamental study introduces an easily scalable modification route that opens the door for expanded CNC functionality and applications.Pickering inverse emulsions of hydroxyl oligoethylene glycol methacrylate were stabilized in isopropyl myristate, a biofriendly oil, using surface-modified cellulose nanocrystals (CNCs) as stabilizing particles. The emulsions were further polymerized by free or controlled radical polymerization (ATRP), taking advantage of the bromoisobutyrate functions grafted on the CNC surface. Suspension polymerization of the emulsion led to full bead or empty capsule morphologies, depending on the initiation locus. The thickness of the CNC shell surrounding the polymerized emulsions could be tuned by modulating the aggregation state of the CNCs after their surface modification. An increase from 6 to 40 CNC layers helped improve the compression moduli of the beads from a dozen to hundreds of kPa.Effective and selective separation of technetium from acidic nuclear liquid waste is highly desirable for partitioning and transmutation but is of significant challenge. Highly efficient extraction of pertechnetate can be achieved by taking H-bonding and electrostatic interaction combined strategy. Base on this strategy, an amine-amide ligand NTAamide(n-Oct) was employed to extract TcO4- in HNO3 solution. Using n-dodecane as a diluent, NTAamide(n-Oct) demonstrated excellent extractability and good selectivity toward TcO4- with a rapid extraction equilibrium that could be reached in less than 1 min. Its maximal loading capacity for TcO4- was almost 100 times as much as that of traditional amine extractant Aliquat-336 nitrate. Meanwhile, TcO4- could be efficiently stripped from the loaded organic phase by (NH4)2CO3 solution. Slope analysis indicated the formation of a 11 complex of NTAamide(n-Oct) with TcO4-. The extraction conformed to the anion exchange extraction model, as confirmed by analyses of single-crystal X-ray diffraction, 1H NMR titration, FTIR, and ESI-MS.Biomass aerogels have received extensive attention due to their unique natural characteristics. However, biomass-based chitosan aerogels are often confronted with the traditional issue concerning a weak skeleton structure, namely, the corresponding huge shrinkage for chitosan aerogels in the stage from the final gel to the aerogel. Herein, we put forward a new approach to enhance chitosan aerogels by introducing natural biomaterial cellulose nanocrystal (CNC). CNC is applied to connect/cross-link chitosan chains to form its networking construction through supramolecular interaction/physical entanglement, eventually realizing the enhancement of the chitosan aerogel network structure. Chitosan aerogels modified with CNC exhibit a high specific surface area of 578.43 cm2 g-1, and the pore size distribution is in the range of 20-60 nm, which is smaller than the mean free path of gas molecules (69 nm), triggering a "no convection" effect. Hence, the gaseous heat transfer of chitosan aerogel is effectively suppressed. Chitosan aerogels with the addition of CNC show an excellent thermal insulation property (0.0272 W m-1 K-1 at ambient condition) and an enhanced compressive strength (0.13 MPa at a strain of 3%). GSK8612 clinical trial This improvement method of chitosan aerogel in enhancing the skeleton structure aspect provides a new kind of idea for strengthening the nanoscale morphology structure of biomass aerogels.Straightforward synthetic routes to the preparation of transition metal phosphides or their chalcogenide analogues are highly desired due to their widespread applications, including catalysis. We report a facile and simple route for the preparation of a pure phase nickel phosphide (Ni2P) and phase transformations in the nickel sulfide (NiS) system through a solvent-less synthetic protocol. Decomposition of different sulfur-based complexes (dithiocarbamate, xanthate, and dithiophosphonate) of nickel(II) was investigated in the presence and absence of triphenylphosphine (TPP). The optimization of reaction parameters (nature of precursor, ratio of TPP, temperature, and time) indicated that phosphorus- and sulfur-containing inorganic dithiophosphonate complexes and TPP (11 mole ratio) produced pure nickel phosphide, whereas different phases of nickel sulfide were obtained from dithiocarbamate and xanthate precursors in the presence or absence of TPP. A plausible explanation of the sulfide or phosphide phase formation is suggested, and the performance of Ni2P was investigated as an electrocatalyst for supercapacitance and overall water-splitting reactions. The performance of Ni2P with the surface free of any capping agents is not well explored, as common synthetic methods are solution-based routes; therefore, the electrocatalytic performance was also compared with metal phosphides, prepared by other routes. The highest specific capacitance of 367 F/g was observed at 1 A/g, and the maximum energy and power density of Ni2P were calculated to be 17.9 Wh/kg and 6951 W/kg, respectively. The prepared nickel phosphide required overpotentials of 174 and 316 mV along with Tafel slopes of 115 and 95 mV/dec to achieve a current density of 10 mA/cm2 for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively.Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized.