Cappshastings7291

Z Iurium Wiki

The reduced dielectric loss is mainly benefited from the reduced concentration of oxygen vacancy and the possible MW effects, and the enhanced dielectric tunability could be ascribed to the weaker domain-pinning effect by oxygen vacancy. The breakthrough provides a new universal strategy to achieve utrahigh tunable performance in A(B'1/2B"1/2)O3 ferroelectric thin films with a B-site nanoscale-ordered structure, meanwhile it paves the way for ultraintergrated tunable thin-film-devices with great phase shifter performance in practical applications.Changes in a large-scale glacial lake area directly reflect the regional glacier status and climate changes. However, long time series of glacial lake dataset and comprehensive investigation of the spatiotemporal changes in the glacial lake area in the whole High Mountain Asia (HMA) region remained elusive. Satellite remote sensing provides an indispensable way for dynamic monitoring of glacial lakes over large regions. But glacial lakes are quite small and discretely distributed, and the extraction of glacial lakes is usually influenced by clouds, snow/ice cover, and terrain shadows; thus, there is a lack of an automatic method to continuously monitor the dynamic changes of glacial lakes in a large scale. In this paper, we developed a per-pixel composited method named the "multitemporal mean NDWI composite" to automatically extract the glacial lake area in HMA from 1990 to 2020 using time-series Landsat data. There were 19,294 glacial lakes covering a total area of 1471.85 ± 366.42 km2 in 1990, and 22,646 glcertainties from supraglacial ponds and glacial meltwater were also estimated to improve the reliability and comparability of glacial lake area changes among different regions. This study provides important technical and data support for regional climate changes, glacier hydrology, and disaster analysis.Diabetes is a chronic metabolic disease with a high blood glucose level, leading to both seriously acute and chronic complications. The closed-loop system is an ideal system for diabetes management. However, the large size and high cost of the commercial systems restrict their widespread uses. Here, we present for the first time a microtube-based wearable closed-loop minisystem for diabetes management. The closed-loop minisystem includes a biosensing device, an electroosmotic micropump, and a printed circuit board (PCB) with an algorithm. The microtube-based sensing device coated on the outer surface of the microtube is inserted into subcutaneous tissue for detecting interstitial glucose; the current signal for sensing glucose is processed by the PCB to power the electroosmotic micropump intelligently for the delivery of insulin into the subcutaneous tissue via the microtube channel. The closed-loop minisystem worn on a diabetic SD rat can successfully maintain its blood glucose level within a safe level. It is expected that this new closed-loop paradigm could open up new prospects for clinical diabetes management.The real-time application of artificial intelligence (AI) technologies in sports is a long-standing challenge owing to large spatial sports field, complexity, and uncertainty of real-world environment, etc. Although some AI-based systems have been applied to sporting events such as tennis, basketball, and football, they are replayed after the game rather than applied in real time. Here, we present an AI-based curling game system, termed CurlingHunter, which can display actual trajectories, predicted trajectories, and house regions of curling during the games via a giant screen in curling stadiums and a live streaming media platform on the internet in real time, so as to assist the game, improve the interest of watching game, help athletes train, etc. We provide a complete description of CurlingHunter' architecture and a thorough evaluation of its performances and demonstrate that CurlingHunter possesses remarkable real-time performance (~9.005 ms), high accuracy (30 ± 3 cm under measurement distance > 20 m), and good stability. CurlingHunter is the first, to the best of our knowledge, real-time system that can assist athletes to compete during the games in the history of sports and has been successfully applied in Winter Olympics and Winter Paralympics. Our work highlights the potential of AI-based systems for real-time applications in sports.Conductive polymer fibers/wires (CPFs) are important materials in modern technologies due to their unique one-dimension geometry, electrical conductivity, and flexibility. However, the advanced applications of current CPFs are limited by their low electrical conductivities ( less then 500 S/m) and poor interfacial interactions between conductive fillers (e.g., graphite) and polymers. Therefore, in current electrical applications, metal wires/foils like copper and aluminum are the most frequently utilized conductive fibers/wires instead of the inferior conductive CPFs. This work successfully addresses the heavy phase segregation between polymers and conductive inorganic materials to obtain semiliquid metal polymer fibers (SLMPFs) which exhibit an ultrahigh electrical conductivity (over 106 S/m), remarkable thermal processability, and considerable mechanical performance (Young's modulus ~300 MPa). Semiliquid metal (gallium-tin alloy) with tunable viscosities is the key to achieve the excellent miscibility between metals and polymers. Both the rheological results and numerical simulations demonstrate the critical viscosity matching for the successful preparation of the fibers. More importantly, the fibers are adapted with classic polymer melt-processing like melt injection, which indicates the scalable production of the highly conductive fibers. The SLMPFs are highly promising substitutes for metal wires/fibers in modern electrical applications such as electricity transmission, data communication, and underwater works.Hydrogel dressings have received extensive attention for the skin wound repair, while it is still a challenge to develop a smart hydrogel for adapting the dynamic wound healing process. Herein, we develop a novel graphene oxide (GO) hybrid hydrogel scaffold with adjustable mechanical properties, controllable drug release, and antibacterial behavior for promoting wound healing. The scaffold was prepared by injecting benzaldehyde and cyanoacetate group-functionalized dextran solution containing GO into a collection pool of histidine. As the GO possesses obvious photothermal behavior, the hybrid hydrogel scaffold exhibited an obvious stiffness decrease and effectively promoted cargo release owing to the breaking of the thermosensitive C=C double bond at a high temperature under NIR light. In addition, NIR-assisted photothermal antibacterial performance of the scaffold could be also achieved with the local temperature rising after irradiation. Therefore, it is demonstrated that the GO hybrid hydrogel scaffold with vascular endothelial growth factor (VEGF) encapsulation can achieve the adjustable mechanical properties, photothermal antibacterial, and angiogenesis during the wound healing process. These features indicated that the proposed GO hybrid hydrogel scaffold is potentially valuable for promoting wound healing and other biomedical application.Many polyurethanes (PUs) are blood-contacting materials due to their good mechanical properties, fatigue resistance, cytocompatibility, biosafety, and relatively good hemocompatibility. Further functionalization of the PUs using chemical synthetic methods is especially attractive for expanding their applications. Herein, a series of catechol functionalized PU (C-PU-PTMEG) elastomers containing variable molecular weight of polytetramethylene ether glycol (PTMEG) soft segment are reported by stepwise polymerization and further introduction of catechol. Tailoring the molecular weight of PTMEG fragment enables a regulable catechol content, mobility of the chain segment, hydrogen bond and microphase separation of the C-PU-PTMEG elastomers, thus offering tunability of mechanical strength (such as breaking strength from 1.3 MPa to 5.7 MPa), adhesion, self-healing efficiency (from 14.9% to 96.7% within 2 hours), anticoagulant, antioxidation, anti-inflammatory properties and cellular growth behavior. As cardiovascular stent coatings, the C-PU-PTMEGs demonstrate enough flexibility to withstand deformation during the balloon dilation procedure. find more Of special importance is that the C-PU-PTMEG-coated surfaces show the ability to rapidly scavenge free radicals to maintain normal growth of endothelial cells, inhibit smooth muscle cell proliferation, mediate inflammatory response, and reduce thrombus formation. With the universality of surface adhesion and tunable multifunctionality, these novel C-PU-PTMEG elastomers should find potential usage in artificial heart valves and surface engineering of stents.

Acute appendicitis represents one of the main causes of surgical emergencies. It can be approached as an open appendectomy or a laparoscopic appendectomy (LA). However, LA generally requires the cooperation of a surgeon and an assistant. This study aims to compare the safety and efficacy of the novel brace-assisted single-person laparoscopic appendectomy (BASPLA) with conventional laparoscopic appendectomy (CLA) in the treatment of patients diagnosed with acute appendicitis by neural network algorithm analysis.

Between January 2020 and December 2021,a total of 120 adult patients with acute appendicitis were randomized to the BASPLA group (62 cases) and the CLA group (58 cases).The clinical data were compared between the two groups, including demographics, clinical characteristics, and outcomes.

There was no significant difference in patients' pain scores before operation (

 = 0.68) and after operation (

 = 0.81) and patient-reported cosmetic scores (

 = 0.43) between the two groups. Operation time iny in emergency surgery, it can achieve satisfactory clinical efficacy without requiring an assistant.Necrotizing fasciitis is a serious infectious condition that may compromise the patient's life. In the present case study, a 42-year-old male patient was reported. The condition manifested as the presence of subjective fever, general malaise, myalgia, non-productive cough, dysphagia and neck pain ~1 week prior to hospital admission. Vascular dissection was considered as the initial diagnostic suspicion, and thus, angiotomography of neck vessels was performed, ruling out aortic and neck vessel dissection. Radiology indicated negativity for aortic syndrome and cervical vascular disease, but the presence of cervical-mediastinal edema, lamellar fluid between muscular and fatty planes and posterior pulmonary atelectasis, absence of pleural fluid or consolidations, and tonsillar hypertrophy without abscesses. Due to the rapid evolution of the condition, the presence of dyspnea with the need for supplemental oxygen, and the disproportion between the intensity of the pain described by the patient and the external findings observed, the presence of necrotizing fasciitis was considered. Point-of-care ultrasonography was performed, indicating a cobblestone pattern of the subcutaneous cellular tissue, with diffuse thickening of the anterior cervical fascia and increased echogenicity with soft tissue edema posterior to the fascia. Magnetic resonance imaging confirmed the inflammatory findings in the fascia and other cervical soft tissues, without exhibiting any signs of necrosis, but with the presence of abscesses in the visceral and carotid space.

Autoři článku: Cappshastings7291 (Riley Maxwell)