Canturiber7914
Two doses of propiverine ER (30 and 45 mg/d) are available for the treatment of overactive bladder (OAB) syndrome. We have explored factors associated with the initial dosing choice (allocation bias), the decision to adapt dosing (escalation bias) and how dosing relative to other factors affects treatment outcomes. Data from two non-interventional studies of 1335 and 745 OAB patients, respectively, receiving treatment with propiverine, were analyzed post-hoc. Multivariate analysis was applied to identify factors associated with dosing decisions and treatment outcomes. Selleck HPK1-IN-2 Several parameters were associated with dose choice, escalation to higher dose or treatment outcomes, but only few exhibited a consistent association across both studies. These were younger age for initial dose choice and basal number of urgency and change in incontinence episodes for up-titration. Treatment outcome (difference between values at 12 weeks vs. baseline) for each OAB system was strongly driven by the respective baseline value, whereas no other parameter exhibited a consistent association. Patients starting on the 30 mg dose and escalating to 45 mg after 4 weeks had outcomes comparable with those staying on a starting dose of 30 or 45 mg. We conclude that dose escalation after 4 weeks brings OAB patients with an initially limited improvement to a level seen in initially good responders. Analysis of underlying factors yielded surprisingly little consistent insight.Prolonged storage of frozen dough worsens the structure of thawed dough. The main reason is the inhibition of yeast activity. In this study we investigated applicability of pulsed electric field treatment for introduction of cryoprotectant into yeast cells. We showed that pre-treatment of cells suspended in a trehalose solution improves freezing tolerance and results in higher viability after thawing. Viability increased with rise in electric field strength (from 3 to 4.5 kV/cm) and incubation time (from 0 to 60 min) after exposure. Pretreatment resulted in lower decrease in the viability of thawed cells, viability of untreated cells dropped to 10%, while pre-treatment with PEF and trehalose tripled the viability.Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of AuNPs on a dimethacrylate-based photopolymer system. The tested composites were designed to overlap the illumination required for the polymerization and the plasmon effect. The 5 nm-sized dodecanethiol capped AuNPs were applied in different concentrations in the matrix that were irradiated with green light (λ = 532 nm), where the Irgacure 784 photoinitiator also absorbs the light. The plasmonic effect was investigated for the refractive index change by surface plasmon resonance imaging (SPRi) supplemented by ellipsometry. Moreover, optical transmission and transmission electron micrographs (TEM), diametral tensile stress (DTS), and confocal Raman spectroscopy was performed to determine the degree of conversion (DC) at 1.0, 1.4, and 2.0 mW/cm2 light intensities. It was found that the optimal conditions were at 0.0208 wt% AuNPs concentration and 1.4 mW/cm2 light intensity at which the refractive index change, DTS, and DC data were all maximal. The study confirmed that AuNPs are applicable to improve the polymerization efficiency of dental composite resin.Heart failure (HF) is a complex disease due to the intricate interplay of several mechanisms, which therefore implies the need for a multimarker strategy to better personalize the care of patients with HF. In this study, we developed a targeted mass spectrometry approach based on multiple reaction monitoring (MRM) to measure multiple circulating protein biomarkers, involved in cardiovascular disease, to address their relevance in the human HF, intending to assess the feasibility of the workflow in the disease monitoring and risk stratification. In this study, we analyzed a total of 60 plasma proteins in 30 plasma samples from eight control subjects and 22 age- and gender- matched HF patients. We identified a panel of four plasma proteins, namely Neuropilin-2, Beta 2 microglobulin, alpha-1-antichymotrypsin, and complement component C9, that were more abundant in HF patients in relation to disease severity and pulmonary dysfunction. Moreover, we showed the ability of the combination of these candidate proteins to discriminate, with sufficient accuracy, HF patients from healthy subjects. In conclusion, we demonstrated the feasibility and potential of a proteomic workflow based on MRM mass spectrometry for the evaluation of multiple proteins in human plasma and the identification of a panel of biomarkers of HF severity.Phosphate-based glasses (PBGs) offer significant therapeutic potential due to their bioactivity, controllable compositions, and degradation rates. Several PBGs have already demonstrated their ability to support direct cell growth and in vivo cytocompatibility for bone repair applications. This study investigated development of PBG formulations with pyro- and orthophosphate species within the glass system (40 - x)P2O5·(16 + x)CaO·20Na2O·24MgO (x = 0, 5, 10 mol%) and their effect on stem cell adhesion properties. Substitution of phosphate for calcium revealed a gradual transition within the glass structure from Q2 to Q0 phosphate species. Human mesenchymal stem cells were cultured directly onto discs made from three PBG compositions. Analysis of cells seeded onto the discs revealed that PBG with higher concentration of pyro- and orthophosphate content (61% Q1 and 39% Q0) supported a 4.3-fold increase in adhered cells compared to glasses with metaphosphate connectivity (49% Q2 and 51% Q1). This study highlights that tuning the composition of PBGs to possess pyro- and orthophosphate species only, enables the possibility to control cell adhesion performance. PBGs with superior cell adhesion profiles represent ideal candidates for biomedical applications, where cell recruitment and support for tissue ingrowth are of critical importance for orthopaedic interventions.In this work, dolomite filler was introduced into thermoplastic starch (TPS) matrix to form TPS-dolomite (TPS-DOL) biocomposites. TPS-DOL biocomposites were prepared at different dolomite loadings (1 wt%, 2 wt%, 3 wt%, 4 wt% and 5 wt%) and by using two different forms of dolomite (pristine (DOL(P) and sonicated dolomite (DOL(U)) via the solvent casting technique. The effects of dolomite loading and sonication process on the mechanical properties of the TPS-DOL biocomposites were analyzed using tensile and tear tests. The chemistry aspect of the TPS-DOL biocomposites was analyzed using Fourier transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. According to the mechanical data, biocomposites with a high loading of dolomite (4 and 5 wt%) possess greater tensile and tear properties as compared to the biocomposites with a low loading of dolomite (1 and 2 wt%). Furthermore, it is also proved that the TPS-DOL(U) biocomposites have better mechanical properties when compared to the TPS-DOL(P) biocomposites. Reduction in the dolomite particle size upon the sonication process assisted in its dispersion and distribution throughout the TPS matrix. Thus, this led to the improvement of the tensile and tear properties of the biocomposite. Based on the findings, it is proven that the sonication process is a simple yet beneficial technique in the production of the TPS-dolomite biocomposites with improved tensile and tear properties for use as packaging film.In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.Obesity, a condition characterized by excessive accumulation of body fat, is a metabolic disorder related to an increased risk of chronic inflammation. Obesity is mediated by signal transducer and activator of transcription (STAT) 3, which is regulated by genes associated with retinoid-interferon-induced mortality (GRIM) 19, a protein ubiquitously expressed in various human tissues. In this study, we investigated the role of GRIM19 in diet-induced obese C57BL/6 mice via intravenous or intramuscular administration of a plasmid encoding GRIM19. Splenocytes from wild-type and GRIM19-overexpressing mice were compared using enzyme-linked immunoassay, real-time polymerase chain reaction, Western blotting, flow cytometry, and histological analyses. GRIM19 attenuated the progression of obesity by regulating STAT3 activity and enhancing brown adipose tissue (BAT) differentiation. GRIM19 regulated the differentiation of mouse-derived 3T3-L1 preadipocytes into adipocytes, while modulating gene expression in white adipose tissue (WAT) and BAT. GRIM19 overexpression reduced diet-induced obesity and enhanced glucose and lipid metabolism in the liver. Moreover, GRIM19 overexpression reduced WAT differentiation and induced BAT differentiation in obese mice. GRIM19-transgenic mice exhibited reduced mitochondrial superoxide levels and a reciprocal balance between Th17 and Treg cells. These results suggest that GRIM19 attenuates the progression of obesity by controlling adipocyte differentiation.Abdominal aortic aneurysm (AAA) bears a high risk of rupture and sudden death of the patient. The pathogenic mechanisms of AAA remain elusive, and surgical intervention represents the only treatment option. Heme oxygenase-1 (HO-1), a heme degrading enzyme, is induced in AAA, both in mice and humans. HO-1 was reported to mitigate AAA development in an angiotensin II (AngII)-induced model of AAA in hyperlipidemic ApoE-/- mice. Since the role of hyperlipidaemia in the pathogenesis of AAA remains controversial, we aimed to evaluate the significance of HO-1 in the development and progression of AAA in normolipidemic animals. The experiments were performed in HO-1-deficient mice and their wild-type counterparts. We demonstrated in non-hypercholesterolemic mice that the high-dose of AngII leads to the efficient formation of AAA, which is attenuated by HO-1 deficiency. Yet, if formed, they are significantly more prone to rupture upon HO-1 shortage. Differential susceptibility to AAA formation does not rely on enhanced inflammatory response or oxidative stress.