Callahanrichmond7201
Our outcomes provide new insight to the complexity of scale-dependent responses within and across taxonomic groups. They suggest that, despite close associations between taxa, LM responses are not easily extrapolated across multiple spatial grains and taxa. Responses of biodiversity to LM are often driven by changes to evenness and spatial aggregation, rather than by changes in individual density. High-site specificity of LM effects might be due to a variety of context-specific factors, such as historic land management, identity of grazers, and grazing regime. Synthesis and applications Our results suggest that links between taxa are not necessarily strong enough to allow for generalization of biodiversity patterns. These findings highlight the importance of considering multiple taxa and spatial grains when investigating LM responses, while promoting management practices that do the same and are tailored to local and regional conditions.
The objective of this study is to estimate the current potential geographic distribution of
and to evaluate the influence of climate on the dynamics of suitable habitat availability in the past and in the future.
Northeast region of Brazil and dry forest areas.
The habitat suitability modeling was based on two algorithms, two global circulation models, and six different scenarios. EN450 solubility dmso We used this tool to estimate the areas of occurrence in the past (Last Interglacial and Last Glacial Maximum), in the present, and in the future (years 2050 and 2070).
According to the models,
had great dynamics in the availability of suitable habitats with periods of retraction and expansion of these areas in the past. Our results suggest that this taxon may benefit in terms of climate suitability gain in Northeast Brazil in the future. In addition, we identified high-altitude areas and the eastern coast as climatically stable.
The information provided can be used by decision makers to support actions toward protecting and sustainably managing this taxon. Protection measures for this taxon are particularly important because this insect contributes to the local flora and, although our results indicate that the climate may favor this taxon, other factors can negatively affect it, such as high levels of habitat loss due to anthropogenic activities.
The information provided can be used by decision makers to support actions toward protecting and sustainably managing this taxon. Protection measures for this taxon are particularly important because this insect contributes to the local flora and, although our results indicate that the climate may favor this taxon, other factors can negatively affect it, such as high levels of habitat loss due to anthropogenic activities.The reduction of plant diversity following eutrophication threatens many ecosystems worldwide. Yet, the mechanisms by which species are lost following nutrient enrichment are still not completely understood, nor are the details of when such mechanisms act during the growing season, which hampers understanding and the development of mitigation strategies.Using a common garden competition experiment, we found that early-season differences in growth rates among five perennial grass species measured in monoculture predicted short-term competitive dominance in pairwise combinations and that the proportion of variance explained was particularly greater under a fertilization treatment.We also examined the role of early-season growth rate in determining the outcome of competition along an experimental nutrient gradient in an alpine meadow. Early differences in growth rate between species predicted short-term competitive dominance under both ambient and fertilized conditions and competitive exclusion under fertilized conditions.The results of these two studies suggest that plant species growing faster during the early stage of the growing season gain a competitive advantage over species that initially grow more slowly, and that this advantage is magnified under fertilization. This finding is consistent with the theory of asymmetric competition for light in which fast-growing species can intercept incident light and hence outcompete and exclude slower-growing (and hence shorter) species. We predict that the current chronic nutrient inputs into many terrestrial ecosystems worldwide will reduce plant diversity and maintain a low biodiversity state by continuously favoring fast-growing species. Biodiversity management strategies should focus on controlling nutrient inputs and reducing the growth of fast-growing species early in the season.Microorganisms govern soil carbon cycling with critical effects at local and global scales. The activity of microbial extracellular enzymes is generally the limiting step for soil organic matter mineralization. Nevertheless, the influence of soil characteristics and climate parameters on microbial extracellular enzyme activity (EEA) performance at different water availabilities and temperatures remains to be detailed. Different soils from the Iberian Peninsula presenting distinctive climatic scenarios were sampled for these analyses. Results showed that microbial EEA in the mesophilic temperature range presents optimal rates under wet conditions (high water availability) while activity at the thermophilic temperature range (60°C) could present maximum EEA rates under dry conditions if the soil is frequently exposed to high temperatures. Optimum water availability conditions for maximum soil microbial EEA were influenced mainly by soil texture. Soil properties and climatic parameters are major environmental components ruling soil water availability and temperature which were decisive factors regulating soil microbial EEA. This study contributes decisively to the understanding of environmental factors on the microbial EEA in soils, specifically on the decisive influence of water availability and temperature on EEA. Unlike previous belief, optimum EEA in high temperature exposed soil upper layers can occur at low water availability (i.e., dryness) and high temperatures. This study shows the potential for a significant response by soil microbial EEA under conditions of high temperature and dryness due to a progressive environmental warming which will influence organic carbon decomposition at local and global scenarios.