Callahanmelton6706

Z Iurium Wiki

Our recent work demonstrates that certain flavoproteins can catalyze the redox activation of Pt(IV) prodrug complexes under light irradiation. Herein, we used site-directed mutagenesis on the mini singlet oxygen generator (mSOG) to modulate the photocatalytic activity of this flavoprotein toward two model Pt(IV) substrates. Among the prepared mutants, Q103V mSOG displayed enhanced catalytic efficiency as a result of its longer triplet excited-state lifetime. This study shows, for the first time, that protein engineering can improve the catalytic capacity of a protein toward metal-containing substrates.Herein, a type of biomass-based electric heating membrane (EHM) with excellent stability was fabricated; this was achieved by incorporating carbon nanotubes (CNTs) into the nanofibrillated cellulose (NFC) as a natural dispersant and a biological substrate, as well as via the control of ultrasonic dispersion, grammage, and encapsulation using poly(dimethylsiloxane) (PDMS) with hot pressing. NFC entangles with CNTs in the form of an intertwined network and non-covalent interactions to fabricate a flexible EHM with steady electric heating performance; this formation is attributed to not only their similar morphology and surface-active groups but also the use of NFC that avoids additional disturbances in the overlapped interface among CNTs as far as possible. The obtained steady resistance varies as low as 5.1% under energized operation. In the encapsulated EHM (EM), PDMS was anchored on its surface by using hot pressing and an intertwined structure to enhance flexibility and robustness. The encapsulated membrane can be used in low-voltage applications, which require flexibility, waterproofing, and insulation.A highly enantioselective and diastereoselective nickel-catalyzed desymmetrizing cyclization of 1,6-dienes was developed by using chiral spiro phosphoramidite ligands. The reaction provides a new atom- and step-economical approach to chiral spiro lactones and analogues bearing a quaternary stereocenter.A cationic gemini surfactant referred to as Py-3-12 and composed of two alkylated diammonium bromide head groups, a propyl spacer, and dodecyl and 1-pyrenehexyl hydrophobic tails was synthesized. Its critical micellar concentration (CMC) was determined to equal 0.15 (±0.02) mM by surface tension and time-resolved fluorescence measurements. The state of the pyrene molecules, whether they were incorporated inside the Py-3-12 micelles or unassociated in the aqueous solution, was determined by applying the global model-free analysis (MFA) to the fluorescence decays acquired with Py-3-12 aqueous solutions. The unassociated Py-3-12 surfactants emitted as pyrene monomers and showed a long fluorescence lifetime. The excited pyrenyl groups located inside Py-3-12 micelles formed an excimer by a rapid encounter with a ground-state pyrene with an average rate constant equal to 0.69 (±0.06) ns-1. After having the photophysical properties of Py-3-12 in aqueous solution characterized, the number (Nagg) of surfactants per micelle was determined by conducting quenching experiments with dinitrotoluene (DNT). Although DNT is fairly hydrophobic, it was found to partition itself between the Py-3-12 micelles and the aqueous phase. Fluorescence quenching experiments performed on the pyrene monomer and excimer generated by the Py-3-12 aqueous solutions yielded the concentration ([Q]b) of DNT bound to the Py-3-12 micelles and the average number ⟨n⟩d of DNT quenching an excimer by diffusive encounters. A combination of steady-state and time-resolved fluorescence quenching experiments on the excimer yielded the number (⟨n⟩s) of DNT molecules that were bound to the micelles and quenched the excimer in a static manner. A plot of the sum ⟨n⟩d + ⟨n⟩s as a function of [Q]b yielded an Nagg value of 14.0 (±0.2) Py-3-12 units per micelle. This study represents the first example in the literature where Nagg is determined for a micelle, where each surfactant molecule is labeled with pyrene.We herein develop a selective phosphoranation of alkynes with phosphonium cation, which directs a concise approach to isoquinolines from unactivated alkyne and nitrile feedstocks in a single step. Mechanistic studies suggest that the annulation reaction is initiated by the unprecedented phosphoranation of alkynes, thus representing a unique reaction pattern of phosphonium salts and distinguishing it from existing protocols that largely rely on the utilization of highly functionalized imines/oximes and/or highly polarized alkynes.The ligand-free Co-catalyzed chemoselective reductive cyclization cascade of enone-tethered aldehydes with i-PrOH as the environmentally benign hydrogen surrogate is developed by this study. Mechanistic studies disclosed that such a protocol is initiated by an ortho-enone-assisted Co(I)-catalyzed reduction of the aldehyde functionality with i-PrOH. Meanwhile, the selectivity from the Michael-Aldol cycloreduction cascade to the oxa-Michael cascade is feasible and readily adjusted by the addition of steric Lewis bases, such as TEMPO and DABCO, delivering substituted 1H-indenes and dihydroisobenzofurans, respectively.A bicyclic pillar[5]arene derivative fused with a bipyridine side ring, a so-called molecular universal joint (MUJ), was synthesized, and the pair of enantiomers was resolved by high-performance liquid chromatography enantioresolution. The electrochemiluminescent detection based on the ruthenium complex of the enantiopure MUJ showed excellent chiral discrimination toward certain amino acids.Pt/Ag solid solution alloy nanoparticles (NPs) with mean size below 3 nm were obtained with composition in miscibility gaps by cosputtering onto liquid polyethylene glycol (PEG, MW = 600). Adjusting the sputtering currents from 10 to 50 mA did not influence the particle sizes obviously but caused a substantial difference in the composition and distributions of Pt/Ag NPs. This is different from sputtered Pt/Au NPs where particle size is correlated with composition. For a pair of sputtering currents, the formed Pt/Ag alloy NPs have a range of compositions. The normal distribution with Pt of 60.2 ± 16.2 at % is observed for the Pt/Ag sample with a nominal Pt content of 55.9 at %, whereas Pt-rich (85.1 ± 14.0 at % Pt) and Ag-rich (19.8 ± 12.2 at % Pt) Pt/Ag samples with nominal Pt contents of 90.9 and 11.9 at % contain more pure Pt and pure Ag NPs, respectively. Different from NPs obtained in PEG, the sputtered NPs on TEM grids had more uniform composition for a longer sputtering time along with a significant increase of particle sizes. This reveals that PEG hindered the combination of NPs and clusters, resulting in small particle sizes even for long time sputtering and broader composition distributions. Thus, the samples obtained in PEG have the compositions mainly determined by the random atom combination in the vacuum chamber and possibly in initial landing of atom/clusters on the PEG surface.We present experimental and theoretical investigations of the photophysics in the one-dimensional (1D) hybrid organic-inorganic perovskite (HOIP) white-light emitter, [DMEDA]PbBr4. It is found that the broadband-emission nature of the 1D perovskite is similar to the case of two-dimensional (2D) HOIP materials, exciton self-trapping (ST) is the dominant mechanism. By comprehensive spectroscopic investigations, we observed direct evidence of exciton crossing the energy barrier separating free and ST states through quantum tunnelling. Moreover, we consider the lattice shrinking mechanisms at low temperatures and interpret the ST exciton formation process using a configuration coordinate diagram. We propose that the energy barrier separating free and ST excitons is temperature-dependent, and consequently, the manner of excitons crossing it is highly dependent on the exciting energy and temperature. For excitons located at the bottom of the free excitonic states, the quantum tunnelling is the dominant channel to the ST states.Two-dimensional laser-induced periodic surface structures with a deep-subwavelength periodicity (80 nm ≈ λ/10) are obtained for the first time on diamond surfaces. BX471 The distinctive surface nanotexturing is achieved by employing a single step technique that relies on irradiation with two temporally delayed and cross-polarized femtosecond-laser pulses (100 fs duration, 800 nm wavelength, 1 kHz repetition rate) generated with a Michelson-like interferometer configuration, followed by chemical etching of surface debris. In this Letter, we demonstrate that, if the delay between two consecutive pulses is ≤2 ps, the 2D periodicity of nanostructures can be tuned by controlling the number of pulses irradiating the surface. Under scanning mode, the method is effective in treating uniformly large areas of diamond, so to induce remarkable antireflection properties able to enhance the absorptance in the visible up to 50 times and to pave the route toward the creation of metasurfaces for future diamond-based optoelectronic devices.The calculation of the anharmonic modes of small- to medium-sized molecules for assigning experimentally measured frequencies to the corresponding type of molecular motions is computationally challenging at sufficiently high levels of quantum chemical theory. Here, a practical and affordable way to calculate coupled-cluster quality anharmonic frequencies using second-order vibrational perturbation theory (VPT2) from machine-learned models is presented. The approach, referenced as "NN + VPT2", uses a high-dimensional neural network (PhysNet) to learn potential energy surfaces (PESs) at different levels of theory from which harmonic and VPT2 frequencies can be efficiently determined. The NN + VPT2 approach is applied to eight small- to medium-sized molecules (H2CO, trans-HONO, HCOOH, CH3OH, CH3CHO, CH3NO2, CH3COOH, and CH3CONH2) and frequencies are reported from NN-learned models at the MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ, and CCSD(T)-F12/aug-cc-pVTZ-F12 levels of theory. For the largest molecules and at the highest levels of theory, transfer learning (TL) is used to determine the necessary full-dimensional, near-equilibrium PESs. Overall, NN + VPT2 yields anharmonic frequencies to within 20 cm-1 of experimentally determined frequencies for close to 90% of the modes for the highest quality PES available and to within 10 cm-1 for more than 60% of the modes. For the MP2 PESs only ∼60% of the NN + VPT2 frequencies were within 20 cm-1 of the experiment, with outliers up to ∼150 cm-1, compared to the experiment. It is also demonstrated that the approach allows to provide correct assignments for strongly interacting modes such as the OH bending and the OH torsional modes in formic acid monomer and the CO-stretch and OH-bend mode in acetic acid.Galactofurans are an important structural constituent of arabinogalactan and lipopolysaccharides (LPS) ubiquitously present on the envelopes of all Mycobacteria. Key to the automated glycan assembly (AGA) of linear galactofuranosides as long as 20-mers was the identification of thioglycoside building blocks with a fine balance of stereoelectronic and steric effects to ensure the stability of oligogalactofuranoside during the synthesis. A benzoylated galactofuranose thioglycoside building block proved most efficient for oligosaccharide construction.

Autoři článku: Callahanmelton6706 (Lawrence Bryan)