Calhounlodberg0395

Z Iurium Wiki

The present study proposed a method of cutting down clustering calculation costs by applying an initial center point approach based on space division and outliers so that no objects would be subordinate to the initial cluster center for dependence lower from the initial cluster center. Since data containing outliers could lead to inappropriate results when they are reflected in the choice of a center point of a cluster, the study proposed an algorithm to minimize the error rates of outliers based on an improved algorithm for space division and distance measurement. The performance experiment results of the proposed algorithm show that it lowered the execution costs by about 13-14% compared with those of previous studies when there was an increase in the volume of clustering data or the number of clusters. It also recorded a lower frequency of outliers, a lower effectiveness index, which assesses performance deterioration with outliers, and a reduction of outliers by about 60%.Artificial intelligence is one of the most popular topics in computer science. Convolutional neural network (CNN), which is an important artificial intelligence deep learning model, has been widely used in many fields. However, training a CNN requires a large amount of labeled data to achieve a good performance but labeling data is a time-consuming and laborious work. Since active learning can effectively reduce the labeling effort, we propose a new intelligent active learning method for deep learning, which is called multi-view active learning based on double-branch network (MALDB). Different from most existing active learning methods, our proposed MALDB first integrates two Bayesian convolutional neural networks (BCNNs) with different structures as two branches of a classifier to learn the effective features for each sample. Then, MALDB performs data analysis on unlabeled dataset and queries the useful unlabeled samples based on different characteristics of two branches to iteratively expand the training dataset and improve the performance of classifier. Finally, MALDB combines multiple level information from multiple hidden layers of BCNNs to further improve the stability of sample selection. The experiments are conducted on five extensively used datasets, Fashion-MNIST, Cifar-10, SVHN, Scene-15 and UIUC-Sports, the experimental results demonstrate the validity of our proposed MALDB.A near-perfect storage time-extended photon echo-based quantum memory protocol has been analyzed by solving the Maxwell-Bloch equations for a backward scheme in a three-level system. The backward photon echo scheme is combined with a controlled coherence conversion process via controlled Rabi flopping to a third state, where the control Rabi flopping collectively shifts the phase of the ensemble coherence. The propagation direction of photon echoes is coherently determined by the phase-matching condition between the data (quantum) and the control (classical) pulses. Herein, we discuss the classical controllability of a quantum state for both phase and propagation direction by manipulating the control pulses in both single and double rephasing photon echo schemes of a three-level system. DTNB research buy Compared with the well-understood uses of two-level photon echoes, the Maxwell-Bloch equations for a three-level system have a critical limitation regarding the phase change when interacting with an arbitrary control pulse area.The capacity limits of fiber-optic communication systems in the nonlinear regime are not yet well understood. In this paper, we study the capacity of amplitude modulated first-order soliton transmission, defined as the maximum of the so-called time-scaled mutual information. Such definition allows us to directly incorporate the dependence of soliton pulse width to its amplitude into capacity formulation. The commonly used memoryless channel model based on noncentral chi-squared distribution is initially considered. Applying a variance normalizing transform, this channel is approximated by a unit-variance additive white Gaussian noise (AWGN) model. Based on a numerical capacity analysis of the approximated AWGN channel, a general form of capacity-approaching input distributions is determined. These optimal distributions are discrete comprising a mass point at zero (off symbol) and a finite number of mass points almost uniformly distributed away from zero. Using this general form of input distributions, a novel closed-form approximation of the capacity is determined showing a good match to numerical results. Finally, mismatch capacity bounds are developed based on split-step simulations of the nonlinear Schro¨dinger equation considering both single soliton and soliton sequence transmissions. This relaxes the initial assumption of memoryless channel to show the impact of both inter-soliton interaction and Gordon-Haus effects. Our results show that the inter-soliton interaction effect becomes increasingly significant at higher soliton amplitudes and would be the dominant impairment compared to the timing jitter induced by the Gordon-Haus effect.Image analysis is a fundamental task for any application where extracting information from images is required [...].Although an imbalance of buying and selling profoundly affects the formation of market trends, a fine-granularity investigation of this perplexity of trading behavior is still missing. Instead of using existing entropy measures, this paper proposed a new indicator based on transaction dataset that enables us to inspect both the direction and the magnitude of this imbalance at high frequency, which we call "polarity". The polarity aims to measure the unevenness of the very essence trading desire based on the most micro decision making units. We investigate the relationship between the polarity and the return at both market-level and stock-level and find that the autocorrelated polarities cause a positive relation between lagged polarities and returns, while the current polarity is the opposite. It is also revealed that these associations shift according to the market conditions. link2 In fact, when aggregating the one-minute polarities into daily signals, we find not only significant correlations disclosed by the market polarity and market emotion, but also the reliability of these signals in terms of reflecting the transitions of market-level behavior. These results imply that our presented polarity can reflect the market sentiment and condition in real time. Indeed, the trading polarity provides a new indicator from a high-frequency perspective to understand and foresee the market's behavior in a data-driven manner.Cognitive systems exhibit astounding prediction capabilities that allow them to reap rewards from regularities in their environment. How do organisms predict environmental input and how well do they do it? As a prerequisite to answering that question, we first address the limits on prediction strategy inference, given a series of inputs and predictions from an observer. We study the special case of Bayesian observers, allowing for a probability that the observer randomly ignores data when building her model. We demonstrate that an observer's prediction model can be correctly inferred for binary stimuli generated from a finite-order Markov model. However, we can not necessarily infer the model's parameter values unless we have access to several "clones" of the observer. As stimuli become increasingly complicated, correct inference requires exponentially more data points, computational power, and computational time. These factors place a practical limit on how well we are able to infer an observer's prediction strategy in an experimental or observational setting.Based on conditional past-future (CPF) correlations, we study the non-Markovianity of a central spin coupled to an isotropic Lipkin-Meshkov-Glick (LMG) bath. Although the dynamics of a system is always non-Markovian, it is found that some measurement time intervals considering a specific process, with respect to a particular set of CPF measurement operators, can be zero, which means that in this case the non-Markovianity of the system could not be detected. link3 Furthermore, the initial system-bath correlations only slightly influence the non-Markovianity of the system in our model. Significantly, it is also found that the dynamics of the system for LMG baths, initially in the ground states corresponding to the symmetric phase and symmetry broken phase, exhibit different properties, and the maximal value of the CPF at the critical point is the smallest, independent of the measurement operator, which means that the criticality can manifest itself by the CPF. Moreover, the effect of bath temperature on the quantum criticality of the CPF depends on the measurement operator.Stealth malware is a representative tool of advanced persistent threat (APT) attacks, which poses an increased threat to cyber-physical systems (CPS) today. Due to the use of stealthy and evasive techniques, stealth malwares usually render conventional heavy-weight countermeasures inapplicable. Light-weight countermeasures, on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures, which normally is a challenging task. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game with both static version (SSPTI) and multi-stage dynamic version (DSPTI), and safety requirements of CPS are introduced as constraints in the defender's decision model. The attacker aims to stealthily penetrate the CPS at the lowest cost (e.g., time, effort) by selecting optimal network links to spread, while the defender aims to retard the malware epidemic as much as possible. Both games are modeled as bi-level integer programs and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg equilibrium of SSPTI, and design a Model Predictive Control strategy to solve DSPTI approximately by sequentially solving an 1+δ approximation of SSPTI. Extensive experiments have been conducted by comparing proposed algorithms and strategies with existing ones on both static and dynamic performance metrics. The evaluation results demonstrate the efficiency of proposed algorithms and strategies on both simulated and real-case-based CPS networks. Furthermore, the proposed dynamic defense framework shows its advantage of achieving a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features.

Autoři článku: Calhounlodberg0395 (Stougaard Alford)