Caldwellcarr7107
As a way to explain the proposed themes, we will analyse an excerpt from the documentary "Últimas Conversas", produced by the Brazilian filmmaker Eduardo Coutinho, in which high school students from public state schools in Rio de Janeiro tell their stories, speaking of dreams and shared challenges. The character Rafaela was selected for this article because of the emergence of unspeakable emotions from her narrative about an expected future as a promise of reconciliation with the alterity of her life story.Cancer research has led to unprecedented advances in treatment in recent decades. Physician-scientists have played a crucial role in these advances given their unique perspective at the intersection between basic research and clinical care, though their representation in cancer research has been in progressive decline. Cancer research programs that feature strong mentorship at the medical student level are associated with increased likelihood of alumni choosing a cancer research career path. In an effort to increase the cancer research medical student training pipeline, senior research faculty from the Tisch Cancer Institute (TCI) at the Icahn School of Medicine at Mount Sinai (ISMMS) developed the TCI Scholars Program, a rigorous mentored research training program funding medical students' summer research. This program is currently in its third year and has garnered significant interest among mentors and students alike from all four TCI Cancer Center Support Grant (CCSG)-funded research programs. Herein, we describe the development, implementation, evaluation, and major outcomes of this program.Adjuvant neuroprotective therapies for acute ischemic stroke (AIS) have demonstrated benefit in animal studies, albeit without human translation. We investigated the safety and efficacy of high-flow normobaric oxygen (NBO) after endovascular recanalization in anterior circulation stroke. This is a prospective randomized controlled study. Eligible patients were randomized to receive high-flow NBO by a Venturi mask (FiO2 50%, flow 15 L/min) or routine low-flow oxygen supplementation by nasal cannula (flow 3 L/min) after vessel recanalization for 6 h. Patient demographics, procedural metrics, complications, functional outcomes, symptomatic intracranial hemorrhage (sICH), and infarct volume were assessed. A total of 91 patients were treated with high-flow NBO. NBO treatment revealed a common odds ratio of 2.2 (95% CI, 1.26 to 3.87) favoring the distribution of global disability scores on the mRS at 90 days. The mortality at 90 days was significantly lower in the NBO group than in the control group, with an absolute difference of 13.86% (rate ratio, 0.35; 95% CI, 0.13-0.93). A significant reduction of infarct volume as determined by MRI was noted in the NBO group. The median infarct volume was 9.4 ml versus 20.5 ml in the control group (beta coefficient, - 20.24; 95% CI, - 35.93 to - 4.55). No significant differences were seen in the rate of sICH, pneumonia, urinary infection, and seizures between the 2 groups. This study suggests that high-flow NBO therapy after endovascular recanalization is safe and effective in improving functional outcomes, decreasing mortality, and reducing infarct volumes in anterior circulation stroke patients within 6 h from stroke onset.Limited therapeutic efficacy of temozolomide (TMZ) against glioblastomas highlights the importance of exploring new drugs for clinical therapy. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, is currently being tested as therapy for glioblastomas. Unfortunately, sunitinib still has insufficient activity to cure glioblastomas. Our aim was to determine the molecular mechanisms counteracting sunitinib drug sensitivity and find potential adjuvant drugs for glioblastoma therapy. Through in vitro experiments, transcriptome screening by RNA sequencing, and in silico analyses, we found that sunitinib induced glioma apoptotic death, and downregulated genes were enriched in oncogenic genes of glioblastoma. Meanwhile, sunitinib-upregulated genes were highly associated with the protective autophagy process. Blockade of autophagy significantly enhanced sunitinib's cytotoxicity. Growth arrest and DNA damage-inducible protein (GADD) 34 was identified as a candidate involved in sunitinib-promoted autophagy through activating p38-mitogen-activated protein kinase (MAPK) signaling. Higher GADD34 levels predicted poor survival of glioblastoma patients and induced autophagy formation in desensitizing sunitinib cytotoxicity. Guanabenz, an alpha2-selective adrenergic agonist and GADD34 functional inhibitor, was identified to enhance the efficacy of sunitinib by targeting GADD34-induced protective autophagy in glioblastoma cells, TMZ-resistant cells, hypoxic cultured cells, sphere-forming cells, and colony formation abilities. A better combined treatment effect with sunitinib and guanabenz was also observed by using xenograft mice. Taken together, the sunitinib therapy combined with guanabenz in the inhibition of GADD34-enhanced protective autophagy may provide a new therapeutic strategy for glioblastoma.Prostaglandin-E2 (PGE2), an important mediator of inflammation, achieves its functions via four different G protein-coupled receptors (EP1, EP2, EP3, and EP4). We previously demonstrated that the EP2 receptor plays a proinflammatory and neurodegenerative role after status epilepticus (SE). We recently developed TG8-260 as a second-generation highly potent and selective EP2 antagonist. Here, we investigate whether TG8-260 is anti-inflammatory and combats neuropathology caused by pilocarpine-induced SE in rats. Adult male Sprague-Dawley rats were injected subcutaneously with pilocarpine (380-400 mg/kg) to induce SE. Following 60 min of SE, the rats were administered three doses of TG8-260 or vehicle and were allowed to recover. Neurodegeneration, neuroinflammation, gliosis, and blood-brain barrier (BBB) integrity were examined 4 days after SE. The results confirmed that pilocarpine-induced SE results in hippocampal neurodegeneration and a robust inflammatory response that persists days after SE. Furthermore, inhibition of the EP2 receptor by TG8-260 administered beginning 2 h after SE significantly reduced hippocampal neuroinflammation and gliosis but, in distinction to the earlier generation EP2 antagonist, did not mitigate neuronal injury or BBB breakdown. NHWD-870 chemical structure Thus, attenuation of neuroinflammation and gliosis is a common feature of EP2 inhibition following SE.As the underlying pathophysiology of progressive forms of multiple sclerosis (MS) remains unclear, current treatment strategies are inadequate. Progressive MS is associated with increased oxidative stress and neuronal damage in lesions along with an extensive representation of activated microglia/macrophages. To target these disease mechanisms, we tested the novel combination of generic medications, hydroxychloroquine (HCQ), and indapamide, in tissue culture and in mice. HCQ is an anti-malarial medication found to inhibit microglial activation and to ameliorate disease activity in experimental autoimmune encephalomyelitis. We are currently completing a phase II trial of HCQ in primary progressive MS ( ClinicalTrials.gov Identifier NCT02913157). Indapamide is an antihypertensive previously discovered in our laboratory drug screen to be an anti-oxidant. As these medications have a different spectrum of activities on disease mechanisms relevant to progressive MS, their use in combination may be more effective than either alone. We thus sought preclinical data for the effectiveness of this combination. In vitro, indapamide had robust hydroxyl scavenging activity, while HCQ and indapamide alone and in combination protected against iron-induced neuronal killing; TNF-α levels in activated microglia were reduced by either drug alone, without additional combination effects. In mice with a lysolecithin lesion that manifests demyelination and axonal loss in the spinal cord, the combination but not individual treatment of HCQ and indapamide reduced CD68+ microglia/macrophage representation in lesions, attenuated axonal injury, and lowered levels of lipid peroxidation. Our study supports the combination of indapamide and HCQ as a new treatment strategy targeting multiple facets of progressive MS.The accumulation of neurofibrillary tangles (NFTs), which is composed of abnormally hyperphosphorylated tau aggregates, is the classic neuropathology associated with cognitive dysfunction in tauopathies such as Alzheimer's disease (AD). However, there is an emerging theory suggesting that dysregulation in cerebral iron may contribute to NFT formation. Iron is speculated to bind to tau and induce conformational changes of the protein, potentially leading to subsequent aggregation and cognitive decline. Deferiprone (DFP) is a clinically available iron chelator, which has demonstrated potential therapeutic advantages of chelating iron in neurodegenerative disorders, and is currently in clinical trials for AD. However, its effect on tau pathology remains unclear. Here, we report the effects of short-term DFP treatment (4 weeks, 100 mg/kg/daily, via oral gavage) in a mixed-gender cohort of the rTg(tauP301L)4510 mouse model of tauopathy. Our results revealed that DFP improved Y-maze and open field performance, accompanied by a 28% decrease in brain iron levels, measured by inductively coupled plasma mass spectrometry (ICP-MS) and reduced AT8-labeled p-tau within the hippocampus in transgenic tau mice. This data supports the notion that iron may play a neurotoxic role in tauopathies and may be a potential therapeutic target for this class of disorders that can be modulated by the clinically available metal chelator DFP.Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.Pediatric movement disorders (PMDs) consist of a heterogeneous group of signs and symptoms caused by numerous neurological diseases. Different neurological disorders in children also share overlapping movement disorders making a diagnosis of the underlying cause of the movement disorder challenging. The similarity of the symptoms across multiple disease types suggests that there may be a final common motor pathway causing the overlapping movement disorders. There are numerous disorders in children associated with disturbances in tone and involuntary movements. This chapter will focus primarily on those disorders that involve abnormalities of tone and other important considerations of pediatric movement disorders. This chapter will address rating scales and goals for treatment and will include a review of symptomatic treatment and, where possible, the treatment of the underlying disease processes. The chapter will review representative disorders, including an inborn error of metabolism, an autoimmune disorder, and a group of neurodegenerative disorders.