Cainlowery8023

Z Iurium Wiki

The dynamics of the next quantum jump for a qubit [two level system] coupled to a readout resonator [damped driven harmonic oscillator] is calculated. A quantum mechanical treatment of readout resonator reveals nonexponential short time behavior which could facilitate detection of the state of the qubit faster than the resonator lifetime.We investigate the delayed rupture of biopolymer gels under a constant shear load by simultaneous dynamic light scattering and rheology measurements. We unveil the crucial role of normal stresses built up during gelation All samples that eventually fracture self-weaken during the gelation process, as revealed by a partial relaxation of the normal stress concomitant to a burst of microscopic plastic rearrangements. Upon applying a shear stress, weakened gels exhibit in the creep regime distinctive signatures in their microscopic dynamics, which anticipate macroscopic fracture by up to thousands of seconds. The dynamics in fracturing gels are faster than those of nonfracturing gels and exhibit large spatiotemporal fluctuations. A spatially localized region with significant plasticity eventually nucleates, expands progressively, and finally invades the whole sample, triggering macroscopic failure.We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.We study collisional loss of a quasi-one-dimensional spin-polarized Fermi gas near a p-wave Feshbach resonance in ultracold ^6Li atoms. We measure the location of the p-wave resonance in quasi-1D and observe a confinement-induced shift and broadening. We find that the three-body loss coefficient L_3 as a function of the quasi-1D confinement has little dependence on confinement strength. We also analyze the atom loss with a two-step cascade three-body loss model in which weakly bound dimers are formed prior to their loss arising from atom-dimer collisions. Epigenetic signaling inhibitor Our data are consistent with this model. We also find a possible suppression in the rate of dimer relaxation with strong quasi-1D confinement. We discuss the implications of these measurements for observing p-wave pairing in quasi-1D.Impulsive optical excitation generally results in a complex nonequilibrium electron and lattice dynamics that involves multiple processes on distinct timescales, and a common conception is that for times shorter than about 100 fs the gap in the electronic spectrum is not seriously affected by lattice vibrations. Here, however, by directly monitoring the photoinduced collapse of the spectral gap in a canonical charge-density-wave material, the blue bronze Rb_0.3MoO_3, we find that ultrafast (∼60  fs) vibrational disordering due to efficient hot-electron energy dissipation quenches the gap significantly faster than the typical structural bottleneck time corresponding to one half-cycle oscillation (∼315  fs) of the coherent charge-density-wave amplitude mode. This result not only demonstrates the importance of incoherent lattice motion in the photoinduced quenching of electronic order, but also resolves the perennial debate about the nature of the spectral gap in a coupled electron-lattice system.Quantum states in graphene are 2-fold degenerate in spins, and 2-fold in valleys. Both degrees of freedom can be utilized for qubit preparations. In our bilayer graphene quantum dots, we demonstrate that the valley g-factor gv, defined analogously to the spin g-factor gs for valley splitting in a perpendicular magnetic field, is tunable by over a factor of 4 from 20 to 90, by gate voltage adjustments only. Larger gv results from larger electronic dot sizes, determined from the charging energy. On our versatile device, bipolar operation, charging our quantum dot with charge carriers of the same or the opposite polarity as the leads, can be performed. Dots of both polarities are tunable to the first charge carrier, such that the transition from an electron to a hole dot by the action of the plunger gate can be observed. Addition of gates easily extends the system to host tunable double dots.The growing interest in gene therapy is coupled with the strong need for the development of safe and efficient gene transfection vectors. A composite based on chitosan and fumed silica has been found to be a prospective gene delivery carrier. This study presents an investigation of the nature of the bonds between a series of nucleotides with a chitosan layer deposited on a fumed silica surface. Experimentally measured surface complex formation constants (logK) of the nucleotides were found to be in the range of 2.69-4.02, which is higher than that for the orthophosphate (2.39). Theoretically calculated nucleotide complexation energies for chitosan deposited on the surface range from 11.5 to 23.0 kcal·mol-1, in agreement with experimental data. The adsorption of nucleotides was interpreted using their calculated speciation in an aqueous solution. Based on the structures of all optimized complexes determined from quantum-chemical PM6 calculations, electrostatic interactions between the surface-located NH3+ groups and -PO3H--/-PO32- fragments of the nucleotides were identified to play the decisive role in the adsorption mechanism. The saccharide fragment of monophosphates also plays an important role in the binding of the nucleotides to chitosan through the creation of hydrogen bonds.The outer membrane (OM) of Gram-negative (G-) bacteria presents a barrier for many classes of antibacterial agents. Lipopolysaccharide (LPS), present in the outer leaflet of the OM, is stabilized by divalent cations and is considered to be the major impediment for antibacterial agent permeation. However, the actual affinities of major antibiotic classes toward LPS have not yet been determined. In the present work, we use Langmuir monolayers formed from E. coli Re and Rd types of LPS to record pressure-area isotherms in the presence of antimicrobial agents. Our observations suggest three general types of interactions. First, some antimicrobials demonstrated no measurable interactions with LPS. This lack of interaction in the case of cefsulodin, a third-generation cephalosporin antibiotic, correlates with its low efficacy against G- bacteria. Ampicillin and ciprofloxacin also show no interactions with LPS, but in contrast to cefsulodin, both exhibit good efficacy against G- bacteria, indicating permeation throuand specificity of these antimicrobials against G- bacteria.In this work, we report a new nonadiabatic molecular dynamics methodology that incorporates many-body (MB) effects in the treatment of electronic excited states in extended atomistic systems via linear-response time-dependent density functional theory (TD-DFT). The nonradiative dynamics of excited states in Si75H64 and Cd33Se33 nanocrystals is studied at the MB (TD-DFT) and single-particle (SP) levels to reveal the role of MB effects. We find that a MB description of the excited states qualitatively changes the structure of coupling between the excited states, leading to larger nonadiabatic couplings and accelerating the dynamics by a factor of 2-4. The dependence of excited state dynamics in these systems on the surface hopping/decoherence methodology and the choice of the dynamical basis is investigated and analyzed. We demonstrated that the use of special "electron-only" or "hole-only" excitation bases may be advantageous over using the full "electron-hole" basis of SP states, making the computed dynamics more consistent with the one obtained at the MB level.Mitochondrial dysregulation controls cell death and survival by changing endogenous molecule concentrations and ion flows across the membrane. Here, we report the design of a triply emissive nanoscale metal-organic layer (nMOL), NA@Zr-BTB/F/R, for sensing mitochondrial dysregulation. Zr-BTB nMOL containing Zr6 secondary building units (SBUs) and 2,4,6-tris(4-carboxyphenyl)aniline (BTB-NH2) ligands was postsynthetically functionalized to afford NA@Zr-BTB/F/R by exchanging formate capping groups on the SBUs with glutathione(GSH)-selective (2E)-1-(2'-naphthyl)-3-(4-carboxyphenyl)-2-propen-1-one (NA) and covalent conjugation of pH-sensitive fluorescein (F) and GSH/pH-independent rhodamine-B (R) to the BTB-NH2 ligands. Cell imaging demonstrated NA@Zr-BTB/F/R as a ratiometric sensor for mitochondrial dysregulation and chemotherapy resistance via GSH and pH sensing.In this study, the effects of debranching on the structure and properties of the starch-lauric acid (LA)-β-lactoglobulin (βLG) complex were studied. Gel permeation chromatography and high-performance anion-exchange chromatography showed that debranching of amylopectin generated short linear chains, which increased in proportions with debranching time. Analyses from differential scanning calorimetry, laser confocal micro-Raman spectroscopy, and X-ray diffraction showed that debranching promoted the formation of starch-LA and starch-LA-βLG complexes, as characterized by the increased enthalpy changes and crystallinity and decreased full width at half maximum of the band at 480 cm-1. Debranching treatment for 6 and 18 h promoted complexation between starch and LA, while extensive debranching was unfavorable for the formation of starch-LA complexes. Similar results were also observed for the starch-LA-βLG complexes. Starch-LA-βLG complexes had more type II and less type I crystallites than starch-LA complexes. From this study, we conclude that debranching of starch favors the formation of starch-LA and starch-LA-βLG complexes, with more type II crystallites formed in starch-LA-βLG complexes.In the present study, we have examined hydride affinities relevant to a range of group 13 and group 14 reductants. We use the high-level W1X-G0, G4(MP2)-XK, and DSD-PBEP86 methods to obtain the RHA42 set of accurate reductant hydride affinities. Assessment of DFT methods with the RHA42 set shows that all functionals that we have examined are fairly accurate. Overall, we find ωB97X-V to be the most accurate. The MN12-SX screened-exchange functional and the nonhybrid B97-D3BJ method also perform well, and they may provide a lower-cost means for obtaining hydride affinities. The trend in the hydride affinities suggests an increased reducing power when one moves down the periodic table, e.g., with TlH3 being a stronger reductant than BH3. We also find that group 13 hydrides are stronger reductants than the group 13 analogues. In general, substitution of a hydrogen, e.g., BH2+ → BHMe+, and the formation of dimer, e.g., BH2+ → B2H5+, also lead to stronger reductants. A notable observation is the small hydride affinities for silyl cations, which are indicative of the potential of silanes as strong reducing agents. In particular, poly(methylhydrosiloxane) (PMHS) cations are associated with especially small hydride affinities owing to the presence of intramolecular oxygen atoms that can stabilize the cation center. We have further found the germanium analogues of the silanes to be more reactive, and they may further widen the scope of main-group hydride reducing agents.

Autoři článku: Cainlowery8023 (Dickinson Knowles)