Caingrossman4638

Z Iurium Wiki

Finally, the recent application of Coherent anti-Stokes Raman scattering (CARS) microscopy for examination of oocyte lipid component will be briefly discussed. CARS overcomes some limits of RMS providing vibrational and spectral information with higher sensitivity, spatial resolution which is ideal to study living oocytes. This review summarizes the research on RMS approaches for oocyte evaluation showing the high potential use, current limitations and new improvements. In PubMed, it is possible to find more than 40,000 papers on embryo evaluation in various species. However, there is no consensus or gold standard method on how to assess their developmental potential. In assisted reproduction the evaluation "problem" is not only limited to embryos but involves the gametes as well. This manuscript provides an overview of some possible applications of label-free microscopy, in particular we describe the potential of the holographic microscopy in the IVF lab. We describe the positive aspects of several currently available microscopy label-free systems. In conclusion, we believe that a next generation of microscopy able to give objective markers for gamete and embryo quality is around the corner. Precise genome editing of large animals applied to livestock and biomedicine is nowadays possible since the CRISPR revolution. This review summarizes the latest advances and the main technical issues that determine the success of this technology. The pathway from editing to printing, from engineering the genome to achieving the desired animals, does not always imply an easy, fast and safe journey. When applied in large animals, CRISPR involves time- and cost-consuming projects, and it is mandatory not only to choose the best approach for genome editing, but also for embryo production, zygote microinjection or electroporation, cryopreservation and embryo transfer. The main technical refinements and most frequent questions to improve this disruptive biotechnology in large animals are presented. In addition, we discuss some CRISPR applications to enhance livestock production in the context of a growing global demand of food, in terms of increasing efficiency, reducing the impact of farming on the environment, enhancing pest control, animal welfare and health. The challenge is no longer technical. Controversies and consensus, opportunities and threats, benefits and risks, ethics and science should be reconsidered to enter into the CRISPR era. Extracellular vesicles (EVs) have emerged as novel cell-to-cell communication mediators in physiological and pathological scenarios. Their ability to transfer their molecular cargo (RNAs, proteins and lipids) from one cell to another, in the vicinity or far from the cell of origin, together with their capacity of exerting a functional impact on the target cell make them valuable diagnostic tools as well as therapeutic vectors in a variety of diseases. In the reproductive field, there is a growing interest in the role of EVs in gamete/embryo-maternal communication and their potential implications in the reproductive success. In this review, we provide current knowledge of EVs secreted by the oviduct (oEVs) and embryos (eEVs), since both have been proposed as key players in the crucial two-way dialogue between the oviduct (lining epithelium and secretions) and the embryo that ensures successful pregnancy. Both oEVs and eEVs molecular cargos and their potential role as multi-signal messengers in the gametes/embryo-oviduct cross-talk and in the embryo-to-embryo communication in different species are also addressed. Eventually, a comparative analysis between oEVs and eEVs has been performed to shed some light on common and specific cargos responsible for their functions supporting the early reproductive events and as prime candidate molecules for improving fertility and assisted reproductive technologies outcomes. Copyright © 2020.A highly accurate 'non-invasive quantitative embryo assessment for pregnancy' (NQEAP) technique that determines embryo quality has been an elusive goal. If developed, NQEAP would transform the selection of embryos from both Multiple Ovulation and Embryo Transfer (MOET), and even more so, in vitro produced (IVP) embryos for livestock breeding. The area where this concept is already having impact is in the field of clinical embryology, where great strides have been taken in the application of morphokinetics and artificial intelligence (AI); while both are already in practice, rigorous and robust evidence of efficacy is still required. Even the translation of advances in the qualitative scoring of human IVF embryos have yet to be translated to the livestock IVP industry, which remains dependent on the MOET-standardised 3-point scoring system. Furthermore, there are new ways to interrogate the biochemistry of individual embryonic cells by using new, light-based methodologies, such as FLIM and hyperspectral microscopy. Combinations of these technologies, in particular combining new imaging systems with AI, will lead to very accurate NQEAP predictive tools, improving embryo selection and recipient pregnancy success. Proteins in semen, either in spermatozoa (SPZ) or seminal plasma (SP), are directly involved in molecular processes and biological pathways regulating sperm function, including fertilizing ability. Therefore, semen proteins are candidates of choice for biomarkers discovery for fertility and for sperm (dys)function. Mass spectrometry (MS)-based proteomics has opened up a new era for characterizing and quantifying the protein profile of SP and SPZ, as well as for unveiling the complex protein interactions involved in the activation of sperm functionality. This article overviews existing literature on MS-based proteomics regarding porcine semen, with a specific focus on the potential practical application of the results achieved so far. this website The weaknesses of current studies and the perspectives for future research in MS-based pig semen proteomics are also addressed. Interferon tau (IFNT), the pregnancy recognition signal secreted from trophectoderm cells of ruminant conceptuses abrogates the uterine luteolytic mechanism to ensure maintenance of functional corpora lutea for production of progesterone (P4). Importantly, IFNT, in concert with P4, also induces expression of genes in uterine luminal (LE) and superficial glandular (sGE) epithelia for transport and/or secretion of histotroph into the uterine lumen to support growth and development of the conceptus. For example, IFNT and P4 induce transporters responsible foer transport of glucose and arginine into the uterine lumen during the peri-implantation period of pregnancy. Arginine activates the mechanistic target of rapamycin (MTOR) nutrient sensing cell signaling pathway to stimulate proliferation, migration, differentiation and translation of mRNAs essential for growth and development of the conceptus. Glucose not utilized by the conceptus is converted to fructose and those two hexose sugars are metabolized via aerobic glycolysis to produce metabolites used in the hexosamine biosynthesis pathway, pathways for one-carbon metabolism, and pentose phosphate pathway for synthesis of ribose sugars and NADPH.

Autoři článku: Caingrossman4638 (Shelton Bay)